Skip to main content

Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety

Abstract

Atmospheric pressure cold plasma is considered to have broad application prospects in different fields, such as plasma agriculture, food preservation, material preparation, and plasma medicine. This chapter presents the generation and characteristics of typical plasma sources that are suitable for different applications. Secondly, advances in plasma diagnostic techniques, plasma modeling, and simulations about gas phase, gas-liquid phase, and liquid phase are introduced in detail. The diagnostic results may offer the valid input to model calculations or validate the correctness of the simulation. Plasma simulation may provide some useful clues on the basic characteristics and kinetic reaction processes of plasma-liquid interaction. Thirdly, the formation mechanisms and physicochemical processes of reactive species coupled with the plasma liquid interaction are summarized. The main contents of this chapter will provide support for the efficient production of reactive species in gas phase and subsequently in liquid phase to meet the requirements of different low-temperature plasma applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae SC, Park SY, Choe W et al (2015) Inactivation of murine norovirus-1 and hepatitis a virus on fresh meats by atmospheric pressure plasma jets. Food Res Int 76:342–347

    Article  CAS  PubMed  Google Scholar 

  • Barletta F, Leys S, Colombo V et al (2020) Insights into plasma-assisted polymerization at atmospheric pressure by spectroscopic diagnostics. Plasma Process Polym 17:1900174. (15pp)

    Article  CAS  Google Scholar 

  • Benedikt J (2010) Plasma-chemical reactions: low pressure acetylene plasmas. J Phys D Appl Phys 43:043001. (21pp)

    Article  Google Scholar 

  • Benedikt J, Hofmann s, Knake N, et al. (2010) Phase resolved optical emission spectroscopy of coaxial microplasma jet operated with He and Ar. Eur Phys J D 60:539–546

    Article  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170

    Article  CAS  PubMed  Google Scholar 

  • Bieiski BH, Cabelli DE, Arudi RL et al (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data Monogr 14:1041–1100

    Article  Google Scholar 

  • Bradford KJ, Dahal P, Van AJ et al (2018) The dry chain: reducing postharvest losses and improving food safety in humid climates. Trends Food Sci Technol 71:84–93

    Article  CAS  Google Scholar 

  • Braithwaite NSTJ (2000) Introduction to gas discharges. Plasma Sources Sci Technol 9:517–527

    Article  CAS  Google Scholar 

  • Bruggeman P, Brandenburg R (2013) Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. J Phys D Appl Phys 46:464001. (28pp)

    Article  Google Scholar 

  • Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002. (59pp)

    Article  Google Scholar 

  • Chen C, Liu DX, Liu ZC et al (2014) A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Process 34:403–4413

    Article  CAS  Google Scholar 

  • Dai XJ, Corr CS, Ponraj SB (2016) Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Processes Polym 13:306–310

    Article  CAS  Google Scholar 

  • Daily JW (1997) Laser induced fluorescence spectroscopy in flames. Prog Energy Combust Sci 23:133–199

    Article  CAS  Google Scholar 

  • Dorai R, Kushner M (2003) A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D Appl Phys 36:666–685

    Article  CAS  Google Scholar 

  • Du CM, Sun YW et al (2008) The Effects of gas composition on active species and byproducts formation in gas-water gliding arc discharge. Plasma Chem Plasma Process 28:523–533

    Article  CAS  Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M et al (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:13002. (33pp)

    Article  Google Scholar 

  • Ekezie FGC, Sun DW, Cheng JH (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Article  Google Scholar 

  • Fierro A, Moore C, Yee B et al (2018) Three-dimensional kinetic modeling of streamer propagation in a nitrogen/helium gas mixture. Plasma Sources Sci Technol 27:105008. (14pp)

    Article  Google Scholar 

  • Gaens WV, Bogaerts A (2014) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys 47:079502. (3pp)

    Article  Google Scholar 

  • Gasanova S (2013) Aqueous-phase electrical discharges: generation, investigation and application for organics removal from water. Dissertation, University of Duisburg-Essen

    Google Scholar 

  • Georgescu N, Apostol L, Gherendi F (2017) Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric, plasma. Food Control 76:52–61

    Article  CAS  Google Scholar 

  • Gessel AFHV, Alards KMJ, Bruggeman PJ (2013) NO production in an RF plasma jet at atmospheric pressure. J Phys D Appl Phys 46:265202. (10pp)

    Article  Google Scholar 

  • Gorbanev Y, Deborah OC, Chechik V (2016) Non-thermal plasma in contact with water: the origin of species. Chem A Eur J 22:3496–3505

    Article  CAS  Google Scholar 

  • Gurol C, Ekinci FY, Aslan N et al (2012) Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol 157:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi S (2013) Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine. AIP Conf Proc 1545:214–222

    Article  CAS  Google Scholar 

  • He J, Zhang YT (2012) Modeling study on the generation of reactive oxygen species in atmospheric radio-frequency helium-oxygen discharges plasma. Process Polym 9:919–928

    Article  CAS  Google Scholar 

  • Hojnik N, Celbar U, Tavcar-kalcher G et al (2017) Mycotoxin decontamination of food: cold atmospheric pressure plasma versus “classic” decontamination. Toxins 9:151

    Article  PubMed Central  Google Scholar 

  • Jasinski M, Mizeraczyk J, Zakrzewski Z et al (2002) CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge. J Phys D Appl Phys 35:2274–2280

    Article  CAS  Google Scholar 

  • Jiang C, Carter C (2014) Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy. Plasma Sources Sci Technol 23:065006. (10pp)

    Article  CAS  Google Scholar 

  • Jiang J, Tan Z, Shan C et al (2016) A new study on the penetration of reactive species in their mass transfer processes in water by increasing the electron energy in plasmas. Phys Plasmas 23:103503. (10pp)

    Article  Google Scholar 

  • Jiang JK, Luo YC, Moldgy A et al (2020) Absolute spatially and time-resolved O,O3, and air densities in the effluent of a modulated RF-driven atmospheric pressure plasma jet obtained by molecular beam mass spectrometry. Plasma Process Polym 17:1900163–1900176

    Article  CAS  Google Scholar 

  • Jimenez-sanchez C, Lozano-sanchez J, Segrua-carretero A et al (2017) Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: techniques and applications. Crit Rev Food Sci Nutr 57:501–523

    Article  CAS  PubMed  Google Scholar 

  • Jovicevic S, Ivkovic M, Pavlovic Z et al (2000) Parametric study of an atmospheric pressure microwave-induced plasma of the mini MIP torch-I. Two-dimensional spatially resolved electron-number density measurements. Spectrochim Acta Part B 55:1879–1893

    Article  Google Scholar 

  • Jun-Seok O, Yolanda A-G, James WB (2011) Time-resolved mass spectroscopic studies of an atmospheric-pressure helium microplasma jet. J Phys D Appl Phys 44:365202. (10pp)

    Article  Google Scholar 

  • Kanazawa S, Kawano H, Watanabe S et al (2011) Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 20:0340108. (8pp)

    Article  Google Scholar 

  • Khlyustova A, Labay C, Machala Z et al (2019) Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: a brief review. Front Chem Sci Eng 2:238–252

    Article  Google Scholar 

  • Kim GJ, Iza F, Lee JK (2006) Electron and ion kinetics in a microhollow cathode discharge. J Phys D Appl Phys 39:4386–4392

    Article  CAS  Google Scholar 

  • Koen VL, Annemie B (2017) Influence of the gap size and dielectric constant of the packing on the plasma discharge in a packed bed dielectric barrier discharge reactor: a fluid modeling study. Plasma Process Polym 14:600129. (11pp)

    Google Scholar 

  • Kwon HC, Jung SY, Kim HY et al (2014) Abnormal electron-heating mode and formation of secondary-energetic electrons in pulsed microwave-frequency atmospheric microplasmas. Phys Plasmas 21:033511. (7pp)

    Article  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB et al (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–484

    Article  CAS  PubMed  Google Scholar 

  • Laroussi M, Lu XP, Keidar M (2017) Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J Appl Phys 122:020901. (19pp)

    Article  Google Scholar 

  • Lee C, Lieberman MA (1995) Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. J Vac Sci Technol A 13:368–380

    Article  CAS  Google Scholar 

  • Lee HW, Lee HW, Kang SK et al (2013) Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions. Plasma Sources Sci Technol 22:055008. (15pp)

    Article  CAS  Google Scholar 

  • Lee MU, Lee JK, Yun GS (2018) Generation of energetic electrons in pulsed microwave plasmas. Plasma Processes Polym 15:1700124. (9pp)

    Article  Google Scholar 

  • Li D, Nikiforov A, Britun N et al (2016) OH radical production in an atmospheric pressure surface micro-discharge array. J Phys D Appl Phys 49:455202. (12pp)

    Article  Google Scholar 

  • Liao XY, Liu DH, Xiang QS et al (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  • Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Lietz AM, Kushner M (2018) Molecular admixtures and impurities in atmospheric pressure plasma jets. J Appl Phys 124:153303. (15pp)

    Article  Google Scholar 

  • Liu DX, Bruggeman P, Iza F et al (2010) Global model of low-temperature atmospheric-pressure He+H2O plasmas. Plasma Sources Sci Technol 19:025018. (2pp)

    Article  Google Scholar 

  • Liu DX, Iza F, Wang XH et al (2011) He+O2+H2O plasmas as a source of reactive oxygen species. Appl Phys Lett 98:221501. (3pp)

    Article  Google Scholar 

  • Liu YF, Liu DX, Zhang JS et al (2020) 1D fluid model of RF-excited cold atmospheric plasmas in helium with air gas impurities. Phys Plasmas 27:04351. (16pp)

    Article  Google Scholar 

  • Lu XP, Jiang ZH, Xiong Q et al (2008) An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl Phys Lett 92:081502. (2pp)

    Article  Google Scholar 

  • Lu XP, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21:034005. (17pp)

    Article  Google Scholar 

  • Lu XP, Naidis GV, Laroussi M et al (2016a) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84

    Article  CAS  Google Scholar 

  • Lu XP, Cullen PJ , Ostrikov K (2016b) Atmospheric pressure nonthermal plasma sources. In: Misra NN, Oliver S, Cullen PJ (eds) Cold plasma in food and agriculture. Academic Press, London, pp 83–116

    Google Scholar 

  • Lu P, Boehm D, Bourke P et al (2017) Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes Polym 14:e1600207. (9pp)

    Article  Google Scholar 

  • Lukes P, Locke BR (2005) Plasma chemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. J Phys D Appl Phys 38:4074–4081

    Article  CAS  Google Scholar 

  • Lukes P, Dolezalova E, Sisrova I et al (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019. (15pp)

    Article  CAS  Google Scholar 

  • Ma RN, Wang GM, Tian Y et al (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  • Machala Z, Tarabova B, Hensel K et al (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes Polym 10:649–659

    Article  CAS  Google Scholar 

  • Marskar R (2020) 3D fluid modeling of positive streamer discharges in air with stochastic photoionization. Plasma Sources Sci Technol 29:055007. (11pp)

    Article  CAS  Google Scholar 

  • Mir SA, Shah MA, Mir MM (2016) Understanding the role of plasma technology in food industry. Food Bioproc Tech 9:734–750

    Article  CAS  Google Scholar 

  • Misra NN, Tiwari BK, Raghavarao, et al. (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3:159–170

    Article  Google Scholar 

  • Murakami T, Niemi K, Gans T et al (2013) Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Sci Technol 22:015003. (29pp)

    Article  CAS  Google Scholar 

  • Murray K, Wu F, Shi J et al (2017) Challenges in the microbiological food safety of fresh produce: limitations of post-harvest washing and the need for alternative interventions. Food Qual Saf 1:289–301

    Article  CAS  Google Scholar 

  • Nguyen DB, Mok YS, Lee WG (2019) Enhanced atmospheric pressure plasma jet performance by an alternative dielectric barrier discharge configuration. IEEE Trans Plasma Sci 47:4795–4801

    Article  CAS  Google Scholar 

  • Nikiforov A, Sarani A, Leys C (2011) The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Sci Technol 20:15014–15021

    Article  Google Scholar 

  • Niquet R, Boehm D, Schnabel U (2018) Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources. Plasma Process Polym 15:e1700127. (11pp)

    Article  Google Scholar 

  • Pan YY, Cheng JH, Sun DW (2019) Cold plasma-mediated treatments for shelf life extension of fresh produce: a review of recent research developments. Compr Rev Food Sci Food Saf 18:1312–1326

    Article  PubMed  Google Scholar 

  • Pankaj SK, Bueno-ferrer C, Misra NN, et al. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35: 5-17

    Google Scholar 

  • Park GY, Park SJ, Choi MY (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001. (21pp)

    Article  Google Scholar 

  • Pavlovich MJ, Chang HW, Sakiyama Y et al (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D Appl Phys 46:145202. (10pp)

    Article  Google Scholar 

  • Rees JA, Seymour DL, Greenwood C-L et al (2010) Mass and energy spectrometry of atmospheric pressure plasmas. Plasma Processes Polym 7:92–101

    Article  CAS  Google Scholar 

  • Reuter S, Woedtke TV, Weltmann KD (2018) The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys 51:233001. (51pp)

    Article  Google Scholar 

  • Roy NC, Hasan HH, Kabir AH et al (2018) Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat. Plasma Sci Technol 20:115501. (11pp)

    Article  Google Scholar 

  • Sarangapani C, Misra NN, Milosavljevic V et al (2016) Pesticide degradation in water using atmospheric air cold plasma. J Water Process Eng 9:225–232

    Article  Google Scholar 

  • Sato Y, Ishikawa K, Tsutsumi T et al (2020) Numerical simulations of stable, high-electron-density atmospheric pressure argon plasma under pin-to-plane electrode geometry: effects of applied voltage polarity. J Phys D Appl Phys 53:265204. (14pp)

    Article  CAS  Google Scholar 

  • Schroter S, Wijaikhum A, Gibson AR (2018) Chemical kinetics in an atmospheric pressure helium plasma containing humidity. Phys Chem Chem Phys 20:24263–24,286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Sun Q, Zhang ZL et al (2015) Characteristics of DC gas-liquid phase atmospheric-pressure plasma and bacteria inactivation mechanism. Plasma Processes Polym 12:252–259

    Article  CAS  Google Scholar 

  • Shen J, Zhang H, Xu ZM et al (2019) Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge. Chem Eng J 362:402–412

    Article  CAS  Google Scholar 

  • Sousa JS, Puech V (2013) Diagnostics of reactive oxygen species produced by microplasmas. J Phys D Appl Phys 46:464005. (12pp)

    Article  Google Scholar 

  • Stephens J, Abide M, Fierro A, Neuber A (2018) Practical considerations for modeling streamer discharges in air with radiation transport. Plasma Sources Sci Technol 27:075007. (9pp)

    Article  Google Scholar 

  • Stoffels E, Gonzalvo YA, Whitmore TD et al (2007) Mass spectrometric detection of short-living radicals produced by a plasma needle. Plasma Sources Sci Technol 16:549–556

    Article  CAS  Google Scholar 

  • Suhem K, Matan N, Nisoa M et al (2013) Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol 2013:107–111

    Article  Google Scholar 

  • Sun B, Liu DX, Iza F et al (2019a) Global model of an atmospheric-pressure capacitive discharge in helium with air impurities from 100 to 10,000 ppm. Plasma Sources Sci Technol 28:035006. (22pp)

    Article  CAS  Google Scholar 

  • Sun B, Liu DX, Wang XH (2019b) Reactive species in cold atmospheric-pressure He+Air plasmas: the influence of humidity. Phys Plasmas 26:063514. (13pp)

    Article  Google Scholar 

  • Surowsky B, Schluter O, Knorr D (2015) Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev 7:82–108

    Article  CAS  Google Scholar 

  • Tani A, Ono Y, Fukui S et al (2012) Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma. Appl Phys Lett 100:254103. (3pp)

    Article  Google Scholar 

  • Tavant A, Lieberman MA (2016) Hybrid global model of water cluster ions in atmospheric pressure Ar/ H2O RF capacitive discharges. J Phys D Appl Phys 49:465201

    Article  Google Scholar 

  • Teunissen J, Ebert U (2016) 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Sci Technol 25:044005. (13pp)

    Article  Google Scholar 

  • Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201. (21pp)

    Article  Google Scholar 

  • Torres J, Palomares JM, Sola A et al (2007) A Stark broadening method to determine simultaneously the electron temperature and density in high-pressure microwave plasmas. J Phys D Appl Phys 40:5929–5936

    Article  CAS  Google Scholar 

  • Uchida G, Nakajima A, Ito T et al (2016) Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water. J Appl Phys 120:203302. (9pp)

    Article  Google Scholar 

  • Uhm HS, Hong YC, Shin DH (2006) A microwave plasma torch and its applications. Plasma Sources Sci Technol 15:S26–S34

    Article  Google Scholar 

  • Von WT, Oehmigen K, Brandenburg R et al (2012) Plasma-liquid interactions: chemistry and antimicrobial effects. In: Plasma for bio-decontamination medicine and food security. Springer, Netherlands, pp 67–78

    Google Scholar 

  • Wagner HE, Brandenburga R, Kozlovb KV (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71:417–436

    Article  CAS  Google Scholar 

  • Walsh JL, Kong MG (2008) Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl Phys Lett 93:111501. (3pp)

    Article  Google Scholar 

  • Wang ZH, Ma WH, Chen CC et al (2011) Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy-A mini review. Chem Eng J 170:353–362

    Article  CAS  Google Scholar 

  • Wang G, Kuang Y, Zhang YT (2020) Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma. Plasma Sci Technol 22:015404. (8pp)

    Article  CAS  Google Scholar 

  • Waskoenig J, Niemi K, Knake N et al (2010) Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol 19:045018. (11pp)

    Article  Google Scholar 

  • Weltmann K-D, Woedtke TV (2017) Plasma medicine-current state of research and medical application. Plasma Phys Control Fusion 59:014031. (11pp)

    Article  Google Scholar 

  • Winter J, Brandenburg R, Weltmann K-D (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001. (19pp)

    Article  Google Scholar 

  • Wu AJ, Zhang H, Li XD et al (2015) Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Trans Plasma Sci 43:836–845

    Article  Google Scholar 

  • Yan DY, Jonathan HS, Keidar M (2017) Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 8:15977–15995

    Article  PubMed  Google Scholar 

  • Yang AJ, Liu DX, Rong MZ et al (2014) A dominant role of oxygen additive on cold atmospheric-pressure He + O2 plasmas. Phys Plasmas 21:083501. (6pp)

    Article  Google Scholar 

  • Zahoranova A, Henselova M, Hudecova D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414

    Article  CAS  Google Scholar 

  • Zhang, ZL, Xu, ZM, Cheng,C, et al. (2017). Bactericidal effects of plasma induced reactive species in dielectric barrier gas-liquid discharge, Plasma Chem Plasma Process, 37: 415–431.

    Google Scholar 

  • Zhou R, Zhou R, Prasad K et al (2018) Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chem 20:5276–5284

    Article  CAS  Google Scholar 

  • Zhu XM, Chen WC, Pu YK (2008) Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma. J Phys D Appl Phys 41:105212. (6pp)

    Article  Google Scholar 

  • Zhu FS, Zhang H, Li XD et al (2018) Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge. J Phys D Appl Phys 51:105202. (8pp)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported jointly by the National Natural Science Foundation of China under Grant Nos. 51877208, 51777206, and 51807046, Anhui Provincial Key R&D Programmes 202004a07020047, Natural Science Foundation of Anhui Province Grant Nos. 1808085MA13 and 1908085MA29, as well as National Key R&D Program of China with Grant No. 2019YFC0119000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, J., Cheng, C., Xu, Z., Lan, Y., Ni, G., Sui, S. (2022). Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_1

Download citation

Publish with us

Policies and ethics