Skip to main content

Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications

Abstract

Even though proteins have been used for the development of plastic materials for a long time, their use has not proliferated when compared to other plant materials, such as starch or cellulose. Moreover, the current trend in the bioplastic market is based on polylactic acid or polyhydroxycarbonates, such that a feasible and globally accepted formulation of protein-based bioplastics is still pursued. The physical instability along time, together with the need of using non-food resources are drawbacks for the development of protein-based materials. Since lots of biowastes from the industry contain a considerable amount of proteins, the application of these natural polymers in the production of biodegradable materials would seem to benefit from a revalorisation of those resources, in agreement with a circular economy. This review is aiming for a comprehensive analysis of the current status of protein-based bioplastics, considering the main plant and animal sources that have been used, describing different wet and dry processing techniques and conditions, as well as the most reported properties (thermal, mechanical, optical, among others).

Keywords

  • Bioplastic
  • Protein
  • Biowaste
  • Characterisation
  • Food

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-1823-9_5
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-1823-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5

References

  • Acquah C, Zhang Y, Dubé MA, Udenigwe CC (2020) Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Curr Res Food Sci 2:61–69

    CrossRef  PubMed  Google Scholar 

  • Adamy M, Verbeek CJR (2013) Injection-molding performance and mechanical properties of blood meal-based thermoplastics. Adv Polym Technol 32:21361

    CrossRef  CAS  Google Scholar 

  • Aggelopoulos T, Katsieris K, Bekatorou A, Pandey A, Banat IM, Koutinas AA (2014) Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem 145:710–716

    CrossRef  CAS  PubMed  Google Scholar 

  • Aguirre-Joya JA, De Leon-Zapata MA, Alvarez-Perez OB, Torres-León C, Nieto-Oropeza DE, Ventura-Sobrevilla JM, Aguilar MA, Ruelas-Chacón X, Rojas R, Ramos-Aguiñaga ME, Aguilar CN (2018) Basic and applied concepts of edible packaging for foods. In: Food packaging and preservation. Springer, New York, NY, pp 1–61

    Google Scholar 

  • Ahmad M, Hani NM, Nirmal NP, Fazial FF, Mohtar NF, Romli SR (2015) Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Prog Org Coat 84:115–127

    CrossRef  CAS  Google Scholar 

  • Åkermo M, Åström BT (2000) Modelling component cost in compression moulding of thermoplastic composite and sandwich components. Compos Part A Appl Sci Manuf 31:319–333

    CrossRef  Google Scholar 

  • Al-Tayyar NA, Youssef AM, Al-hindi R (2020) Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: a review. Food Chem 310:125915

    CrossRef  CAS  PubMed  Google Scholar 

  • Álvarez-Castillo E, Del Toro A, Aguilar JM, Guerrero A, Bengoechea C (2018) Optimization of a thermal process for the production of superabsorbent materials based on a soy protein isolate. Ind Crop Prod 125:573–581

    CrossRef  CAS  Google Scholar 

  • Álvarez-Castillo E, Bengoechea C, Rodríguez N, Guerrero A (2019) Development of green superabsorbent materials from a by-product of the meat industry. J Clean Prod 223:651–661

    CrossRef  CAS  Google Scholar 

  • Álvarez-Castillo E, Bengoechea C, Guerrero A (2020a) Composites from by-products of the food industry for the development of superabsorbent biomaterials. Food Bioprod Process 119:296–305

    CrossRef  CAS  Google Scholar 

  • Álvarez-Castillo E, Bengoechea C, Guerrero A (2020b) Effect of pH on the properties of porcine plasma-based superabsorbent materials. Polym Test 85:106453

    CrossRef  CAS  Google Scholar 

  • Álvarez-Castillo E, Oliveira S, Bengoechea C, Sousa I, Raymundo A, Guerrero A (2021) A rheological approach to 3D printing of plasma protein based doughs. J Food Eng 288:110255

    CrossRef  CAS  Google Scholar 

  • Aman Mohammadi M, Ramazani S, Rostami M, Raeisi M, Tabibiazar M, Ghorbani M (2019) Fabrication of food-grade nanofibers of whey protein Isolate–Guar gum using the electrospinning method. Food Hydrocoll 90:99–104

    CrossRef  CAS  Google Scholar 

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302

    CrossRef  CAS  Google Scholar 

  • Araújo CS, Rodrigues AMC, Peixoto Joele MRS, Araújo EAF, Lourenço LFH (2018) Optmizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packag Shelf Life 16:23–30

    CrossRef  Google Scholar 

  • Arêas JAG (1992) Extrusion of food proteins. Crit Rev Food Sci Nutr 32:365–392

    CrossRef  PubMed  Google Scholar 

  • Ashter SA (2016) 7 - Processing biodegradable polymers. In: Ashter SA (ed) Plastics design library. William Andrew Publishing, Oxford, pp 179–209

    Google Scholar 

  • Audic J-L, Chaufer B, Daufin G (2003) Non-food applications of milk components and dairy co-products: a review. Lait 83:417–438

    CrossRef  CAS  Google Scholar 

  • Avena-Bustillos RJ, Krochta JM (1993) Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslinking and lipid content. J Food Sci 58:904–907

    CrossRef  CAS  Google Scholar 

  • Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater 19:193–204

    CrossRef  CAS  Google Scholar 

  • Bah CSF, Bekhit AE-DA, Carne A, McConnell MA (2013) Slaughterhouse blood: an emerging source of bioactive compounds. Compr Rev Food Sci Food Saf 12:314–331

    CrossRef  CAS  Google Scholar 

  • Balaguer MP, Gomez-Estaca J, Gavara R, Hernandez-Muñoz P (2011a) Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde. J Agric Food Chem 59:13212–13220

    CrossRef  CAS  PubMed  Google Scholar 

  • Balaguer MP, Gómez-Estaca J, Gavara R, Hernandez-Munoz P (2011b) Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 59:6689–6695

    CrossRef  CAS  PubMed  Google Scholar 

  • Banks HT, Hu S, Kenz ZR (2011) A brief review of elasticity and viscoelasticity for solids. Adv Appl Math Mech 3:1–51

    CrossRef  Google Scholar 

  • Barnes HA (2000) A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics, Wales

    Google Scholar 

  • Barone JR, Schmidt WF (2006) Compositions and films comprised of avian feather keratin. US Patent 7,066,995, 27 Jun 2006

    Google Scholar 

  • Bengoechea C, Arrachid A, Guerrero A, Hill SE, Mitchell JR (2007) Relationship between the glass transition temperature and the melt flow behaviour for gluten, casein and soya. J Cereal Sci 45:275–284

    CrossRef  CAS  Google Scholar 

  • Bernard C, Christian A, Jean-Louis C, Stéphane G (2018) Edible packaging films based on fish myofibrillar proteins: formulation and functional properties. J Food Sci 60:1369–1374

    Google Scholar 

  • Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38:21–33

    CrossRef  CAS  Google Scholar 

  • Biscarat J, Charmette C, Sanchez J, Pochat-Bohatier C (2015) Development of a new family of food packaging bioplastics from cross-linked gelatin based films. Can J Chem Eng 93:176–182

    CrossRef  CAS  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504

    CrossRef  CAS  Google Scholar 

  • Bourny V, Perez-Puyana V, Felix M, Romero A, Guerrero A (2017) Evaluation of the injection moulding conditions in soy/nanoclay based composites. Eur Polym J 95:539–546

    CrossRef  CAS  Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610

    CrossRef  CAS  Google Scholar 

  • Brandenburg AH, Weller CL, Testin RF (1993) Edible films and coatings from soy protein. J Food Sci 58:1086–1089

    CrossRef  CAS  Google Scholar 

  • Bruyninckx K, Jansens KJA, Goderis B, Delcour JA, Smet M (2015) Removal of disulfide cross-links from wheat gluten and the effect thereof on the mechanical properties of rigid gluten bioplastic. Eur Polym J 68:573–584

    CrossRef  CAS  Google Scholar 

  • Budhavaram NK, Miller JA, Shen Y, Barone JR (2010) Protein substitution affects glass transition temperature and thermal stability. J Agric Food Chem 58:9549–9555

    CrossRef  CAS  PubMed  Google Scholar 

  • Callister WD (2007) Materials science and engineering: an introduction. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Campos CA, Gerschenson LN, Flores SK (2011) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 4:849–875

    CrossRef  CAS  Google Scholar 

  • Capezza AJ, Glad D, Özeren HD, Newson WR, Olsson RT, Johansson E, Hedenqvist MS (2019) Novel sustainable superabsorbents: a one-pot method for functionalization of side-stream potato proteins. ACS Sustain Chem Eng 7:17845–17854

    CrossRef  CAS  Google Scholar 

  • Capezza AJ, Cui Y, Numata K, Lundman M, Newson WR, Olsson RT, Johansson E, Hedenqvist MS (2020a) High capacity functionalized protein superabsorbents from an agricultural co-product: a cradle-to-cradle approach. Adv Sustain Syst 4:2000110

    CrossRef  CAS  Google Scholar 

  • Capezza AJ, Lundman M, Olsson RT, Newson WR, Hedenqvist MS, Johansson E (2020b) Carboxylated wheat gluten proteins: a green solution for production of sustainable superabsorbent materials. Biomacromolecules 21:1709–1719

    CrossRef  CAS  PubMed  Google Scholar 

  • Chambi H, Grosso C (2006) Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res Int 39:458–466

    CrossRef  CAS  Google Scholar 

  • Chantapet P, Kunanopparat T, Menut P, Siriwattanayotin S (2013) Extrusion processing of wheat gluten bioplastic: effect of the addition of kraft lignin. J Polym Environ 21:864–873

    CrossRef  CAS  Google Scholar 

  • Chen P, Zhang L, Cao F (2005) Effects of moisture on glass transition and microstructure of glycerol-plasticized soy protein. Macromol Biosci 5:872–880

    CrossRef  CAS  PubMed  Google Scholar 

  • Chen J, Mu T, Goffin D, Blecker C, Richard G, Richel A, Haubruge E (2019) Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. J Food Eng 261:76–86

    CrossRef  CAS  Google Scholar 

  • Chentir I, Kchaou H, Hamdi M, Jridi M, Li S, Doumandji A, Nasri M (2019) Biofunctional gelatin-based films incorporated with food grade phycocyanin extracted from the Saharian cyanobacterium Arthrospira sp. Food Hydrocoll 89:715–725

    CrossRef  CAS  Google Scholar 

  • Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho S-W, Gällstedt M, Johansson E, Hedenqvist MS (2011) Injection-molded nanocomposites and materials based on wheat gluten. Int J Biol Macromol 48:146–152

    CrossRef  CAS  PubMed  Google Scholar 

  • Choi W-S, Han JH (2001) Physical and mechanical properties of pea-protein-based edible films. J Food Sci 66:319–322

    CrossRef  CAS  Google Scholar 

  • Choi WS, Han JH (2002) Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. J Food Sci 67:1399–1406

    CrossRef  CAS  Google Scholar 

  • Cortés-Triviño E, Martínez I (2018) Wheat gluten/montmorillonite biocomposites: effect of pH on the mechanical properties and clay dispersion. Express Polym Lett 12:616–627

    CrossRef  CAS  Google Scholar 

  • Cuadri AA, Bengoechea C, Romero A, Guerrero A (2016) A natural-based polymeric hydrogel based on functionalized soy protein. Eur Polym J 85:164–174

    CrossRef  CAS  Google Scholar 

  • Cuadri AA, Romero A, Bengoechea C, Guerrero A (2017) Natural superabsorbent plastic materials based on a functionalized soy protein. Polym Test 58:126–134

    CrossRef  CAS  Google Scholar 

  • Cuadri AA, Romero A, Bengoechea C, Guerrero A (2018) The effect of carboxyl group content on water uptake capacity and tensile properties of functionalized soy protein-based superabsorbent plastics. J Polym Environ 26:2934

    CrossRef  CAS  Google Scholar 

  • Cuq B, Gontard N, Cuq J-L, Guilbert S (1996) Stability of myofibrillar protein-based biopackagings during storage. LWT Food Sci Technol 29:344–348

    CrossRef  CAS  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1997) Thermoplastic properties of fish myofibrillar proteins: application to biopackaging fabrication. Polymer (Guildf) 38:4071–4078

    CrossRef  CAS  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9

    CrossRef  CAS  Google Scholar 

  • Das O, Hedenqvist MS, Johansson E, Olsson RT, Loho TA, Capezza AJ, Singh Raman RK, Holder S (2019) An all-gluten biocomposite: comparisons with carbon black and pine char composites. Compos Part A Appl Sci Manuf 120:42. https://doi.org/10.1016/j.compositesa.2019.02.015

    CrossRef  CAS  Google Scholar 

  • Dàvila E, Parés D, Cuvelier G, Relkin P (2007) Heat-induced gelation of porcine blood plasma proteins as affected by pH. Meat Sci 76:216–225

    CrossRef  PubMed  CAS  Google Scholar 

  • Day L (2011) 10 - Wheat gluten: production, properties and application. In: Phillips GO, Williams PA (eds) Woodhead Publishing series in food science, technology and nutrition. Woodhead Publishing, Cambridge, pp 267–288

    Google Scholar 

  • De Graaf LA (2000) Denaturation of proteins from a non-food perspective. J Biotechnol 79:299–306

    CrossRef  PubMed  Google Scholar 

  • De Pilli T (2020) Development of a vegetable oil and egg proteins edible film to replace preservatives and primary packaging of sweet baked goods. Food Control 114:107273

    CrossRef  CAS  Google Scholar 

  • Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari SM, Dadashi S (2014) Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr Polym 109:148–154

    CrossRef  CAS  PubMed  Google Scholar 

  • Delgado M, Felix M, Bengoechea C (2018) Development of bioplastic materials: from rapeseed oil industry by products to added-value biodegradable biocomposite materials. Ind Crop Prod 125:401–407

    CrossRef  CAS  Google Scholar 

  • Deng R, Chen Y, Chen P, Zhang L, Liao B (2006) Properties and biodegradability of water-resistant soy protein/poly(ε-caprolactone)/toluene-2,4-diisocyanate composites. Polym Degrad Stab 91:2189–2197

    CrossRef  CAS  Google Scholar 

  • Deng Y, Achten WMJ, Van Acker K, Duflou JR (2013) Life cycle assessment of wheat gluten powder and derived packaging film. Biofuels Bioprod Biorefin 7:429–458

    CrossRef  CAS  Google Scholar 

  • Di Pierro P, Mariniello L, Giosafatto CVL, Masi P, Porta R (2005) Solubility and permeability properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase. Food Biotechnol 19:37–49

    CrossRef  Google Scholar 

  • Diañez I, Martínez I, Partal P (2016) Synergistic effect of combined nanoparticles to elaborate exfoliated egg-white protein-based nanobiocomposites. Compos Part B Eng 88:36–43

    CrossRef  CAS  Google Scholar 

  • Domenek S, Feuilloley P, Gratraud J, Morel M-H, Guilbert S (2004) Biodegradability of wheat gluten based bioplastics. Chemosphere 54:551–559

    CrossRef  CAS  PubMed  Google Scholar 

  • Dorigato A, Pegoretti A (2012) Biodegradable single-polymer composites from polyvinyl alcohol. Colloid Polym Sci 290:359–370

    CrossRef  CAS  Google Scholar 

  • Dror Y, Ziv T, Makarov V, Wolf H, Admon A, Zussman E (2008) Nanofibers made of globular proteins. Biomacromolecules 9:2749–2754

    CrossRef  CAS  PubMed  Google Scholar 

  • Elamparithi A, Punnoose AM, Kuruvilla S (2016) Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 44:1318

    CrossRef  CAS  PubMed  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49

    CrossRef  CAS  PubMed  Google Scholar 

  • Elzoghby AO, Elgohary MM, Kamel NM (2015) Chapter Six - Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs. In: Donev R (ed) Protein and peptide nanoparticles for drug delivery. Academic Press, New York, NY, pp 169–221

    CrossRef  Google Scholar 

  • European Bioplastics (2019) Bioplastics, facts and figures. Springer, Berlin

    Google Scholar 

  • Fabra MJ, Busolo MA, Lopez-Rubio A, Lagaron JM (2013) Nanostructured biolayers in food packaging. Trends Food Sci Technol 31:79–87

    CrossRef  CAS  Google Scholar 

  • Fabra MJ, López-Rubio A, Lagaron JM (2016) Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocoll 55:11–18

    CrossRef  CAS  Google Scholar 

  • Farris S, Introzzi L, Piergiovanni L (2009) Evaluation of a bio-coating as a solution to improve barrier, friction and optical properties of plastic films. Packag Technol Sci 22:69–83

    CrossRef  CAS  Google Scholar 

  • Felix M, Martín-Alfonso JE, Romero A, Guerrero A, Felix M, Martin-Alfonso JE, Romero A, Guerrero A (2014) Development of albumen/soy biobased plastic materials processed by injection molding. J Food Eng 125:7–16

    CrossRef  CAS  Google Scholar 

  • Felix M, Romero A, Cordobes F, Guerrero A (2015a) Development of crayfish bio-based plastic materials processed by small-scale injection moulding. J Sci Food Agric 95:679–687

    CrossRef  CAS  PubMed  Google Scholar 

  • Felix M, Romero A, Martín-Alfonso JEE, Guerrero A (2015b) Development of crayfish protein-PCL biocomposite material processed by injection moulding. Compos Part B Eng 78:291–297

    CrossRef  CAS  Google Scholar 

  • Felix M, Carpintero V, Romero A, Guerrero A (2016a) Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding. Polimeros 26:277

    CrossRef  Google Scholar 

  • Felix M, Lucio-Villegas A, Romero A, Guerrero A (2016b) Development of rice protein bio-based plastic materials processed by injection molding. Ind Crop Prod 79:152–159

    CrossRef  CAS  Google Scholar 

  • Felix M, Perez-Puyana V, Romero A, Guerrero A (2017) Development of protein-based bioplastics modified with different additives. J Appl Polym Sci 134:45430

    CrossRef  CAS  Google Scholar 

  • Felix M, Martinez I, Romero A, Partal P, Guerrero A (2018) Effect of pH and nanoclay content on the morphology and physicochemical properties of soy protein/montmorillonite nanocomposite obtained by extrusion. Compos Part B Eng 140:197–203

    CrossRef  CAS  Google Scholar 

  • Fernández-d’Arlas B (2019) Tough and functional cross-linked bioplastics from sheep wool keratin. Sci Rep 9:14810

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Espada L (2016) Desarrollo de materiales bioplásticos proteicos con elevada capacidad de absorción de agua. Universidad de Sevilla

    Google Scholar 

  • Fernandez-Espada L, Bengoechea C, Cordobes F, Guerrero A (2013) Linear viscoelasticity characterization of egg albumen/glycerol blends with applications in material moulding processes. Food Bioprod Process 91:319–326

    CrossRef  CAS  Google Scholar 

  • Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016a) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci 133:42980

    CrossRef  CAS  Google Scholar 

  • Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016b) Thermomechanical properties and water uptake capacity of soy protein-based bioplastics processed by injection molding. J Appl Polym Sci 133:43524

    CrossRef  Google Scholar 

  • Fernández-Espada L, Bengoechea C, Sandía JAA, Cordobés F, Guerrero A (2019) Development of novel soy-protein-based superabsorbent matrixes through the addition of salts. J Appl Polym Sci 136:47012

    CrossRef  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York, NY

    Google Scholar 

  • Flambeau M, Redl A, Respondek F (2017) Chapter 4 - Proteins from wheat: sustainable production and new developments in nutrition-based and functional applications. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic Press, San Diego, CA, pp 67–78

    CrossRef  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2018) FAOSTAT statistical database, Rome

    Google Scholar 

  • Gadhave RV, Das A, Mahanwar PA, Gadekar PT (2018) Starch based bio-plastics: the future of sustainable packaging. Open J Polym Chem 08:21–33

    CrossRef  CAS  Google Scholar 

  • Garavand F, Rouhi M, Razavi SH, Cacciotti I, Mohammadi R (2017) Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. Int J Biol Macromol 104:687–707

    CrossRef  CAS  PubMed  Google Scholar 

  • Garrison TF, Murawski A, Quirino RL (2016) Bio-based polymers with potential for biodegradability. Polymers (Basel) 8:262

    CrossRef  CAS  Google Scholar 

  • Gatnau R, Polo J, Robert E (2001) Plasma protein antimicrobialsubstitution at negligible risk. In: Brufau J (ed) Feed manufacturing in the mediterranean region. Improving safety: from feed to food. CIHEAM-IAMZ, Zaragoza, pp 141–150

    Google Scholar 

  • Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl 33:1228–1235

    CrossRef  CAS  PubMed  Google Scholar 

  • Gennadios A, Weller CL (1990) Edible films and coatings from wheat and corn proteins. Food Technol 44:63–69

    Google Scholar 

  • Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993) Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41:1835–1839

    CrossRef  CAS  Google Scholar 

  • Ghanbarzadeh B, Oromiehie AR, Musavi M, D-Jomeh ZE, Rad ER, Milani J (2006) Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res Int 39:882–890

    CrossRef  CAS  Google Scholar 

  • Ghanbarzodeh B, Oromiehie AR, Musavi M, Falcone PM, D-Jomeh ZE, Rad ER (2007) Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols. Packag Technol Sci 20:155–163

    CrossRef  CAS  Google Scholar 

  • Gilbert M (2017) Chapter 22-Cellulose plastics. In: Gilbert M (ed) Brydson’s plastics materials, 8th edn. Butterworth-Heinemann, Oxford, pp 617–630

    CrossRef  Google Scholar 

  • di Gioia L, Guilbert S (1999) Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers. J Agric Food Chem 47:1254–1261

    CrossRef  PubMed  Google Scholar 

  • di Gioia L, Cuq B, Guilbert S (2000) Mechanical and water barrier properties of corn-protein-based biodegradable plastics. J Mater Res 15:2612–2619

    CrossRef  Google Scholar 

  • Gómez-Estaca J, Gavara R, Catalá R, Hernández-Muñoz P (2016) The potential of proteins for producing food packaging materials: a review. Packag Technol Sci 29:203–224

    CrossRef  CAS  Google Scholar 

  • Gómez-Heincke D, Martínez I, Stading M, Gallegos C, Partal P (2017) Improvement of mechanical and water absorption properties of plant protein based bioplastics. Food Hydrocoll 73:21–29

    CrossRef  CAS  Google Scholar 

  • Gomez-Martinez D, Partal P, Martinez I, Gallegos C (2009) Rheological behaviour and physical properties of controlled-release gluten-based bioplastics. Bioresour Technol 100:1828–1832

    CrossRef  CAS  PubMed  Google Scholar 

  • Gontard N, Guilbert S (1994) Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Food packaging and preservation. Springer, New York, NY, pp 159–181

    CrossRef  Google Scholar 

  • Gontard N, Guilbert S, Cuq J-L (1992) Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J Food Sci 57:190–195

    CrossRef  CAS  Google Scholar 

  • Gontard N, Guilbert SS, Cuq J-L (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58:206–211

    CrossRef  CAS  Google Scholar 

  • Gontard N, Duchez C, J-L CUQ, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int J Food Sci Technol 29:39–50

    CrossRef  CAS  Google Scholar 

  • González-Gutiérrez J, Partal P, García-Morales M, Gallegos C (2011) Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics. Carbohydr Polym 84:308–315

    CrossRef  CAS  Google Scholar 

  • Gounga ME, Xu S-Y, Wang Z (2007) Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. J Food Eng 83:521–530

    CrossRef  CAS  Google Scholar 

  • Guerrero P, de la Caba K (2010) Thermal and mechanical properties of soy protein films processed at different pH by compression. J Food Eng 100:261–269

    CrossRef  CAS  Google Scholar 

  • Guerrero A, Carmona J, Martinez I, Cordobes F, Partal P (2004) Effect of pH and added electrolyte on the thermal-induced transitions of egg yolk. Rheol Acta 43:539–549

    CrossRef  CAS  Google Scholar 

  • Guerrero P, Retegi A, Gabilondo N, de la Caba K (2010) Mechanical and thermal properties of soy protein films processed by casting and compression. J Food Eng 100:145–151

    CrossRef  CAS  Google Scholar 

  • Guilbert S, Gontard N, Cuq B (1995) Technology and applications of edible protective films. Packag Technol Sci 8:339–346

    CrossRef  CAS  Google Scholar 

  • Guilbert S, Morel MH, Gontard N, Cuq B (2006) Protein-based plastics and composites as smart green materials. ACS Symp Ser 921:334–350

    CrossRef  CAS  Google Scholar 

  • Ha TT, Padua GW (2001) Effect of extrusion processing on properties of zein-fatty acids sheets. Trans Am Soc Agric Eng 44:1223–1228

    CAS  Google Scholar 

  • Herald TJ, Obuz E, Twombly WW, Rausch KD (2002) Tensile properties of extruded corn protein low-density polyethylene films. Cereal Chem 79:261–264

    CrossRef  CAS  Google Scholar 

  • Heralp TJ, Gnanasambadam R, Mcguire BH, Hachmeister KA (1995) Degradable wheat gluten films: preparation, properties and applications. J Food Sci 60:1147–1150

    CrossRef  Google Scholar 

  • Hernández-Muñoz P, Kanavouras A, Ng PKW, Gavara R (2003) Development and characterization of biodegradable films made from wheat gluten protein fractions. J Agric Food Chem 51:7647–7654

    CrossRef  PubMed  CAS  Google Scholar 

  • Hernández-Muñoz P, Villalobos R, Chiralt A (2004) Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocoll 18:647–654

    CrossRef  CAS  Google Scholar 

  • Hicks TM, Verbeek CJR (2016) Chapter 1 - Protein-rich by-products: production statistics, legislative restrictions, and management options. In: Dhillon G (ed) Protein byproducts. Transformation from environmental burden into value-added products. Academic Press, New York, NY, pp 1–18

    Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond Ser B Biol Sci 364:2115–2126

    CrossRef  CAS  Google Scholar 

  • Howell NK, Lawrie RA (1983) Functional aspects of blood plasma proteins. Int J Food Sci Technol 18:747–762

    CrossRef  CAS  Google Scholar 

  • Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Huang J, Zhang L, Chen F (2003) Effects of lignin as a filler on properties of soy protein plastics. I. Lignosulfonate. J Appl Polym Sci 88:3284–3290

    CrossRef  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer (Guildf) 45:5361–5368

    CrossRef  CAS  Google Scholar 

  • Huang GP, Shanmugasundaram S, Masih P, Pandya D, Amara S, Collins G, Arinzeh TL (2015) An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J Biomed Mater Res Part A 103:762–771

    CrossRef  CAS  Google Scholar 

  • Hurtado S, Dagà I, Espigulé E, Parés D, Saguer E, Toldrà M, Carretero C (2011) Use of porcine blood plasma in “phosphate-free frankfurters”. Proc Food Sci 1:477–482

    CrossRef  CAS  Google Scholar 

  • Hurtado S, Saguer E, Toldrà M, Parés D, Carretero C (2012) Porcine plasma as polyphosphate and caseinate replacer in frankfurters. Meat Sci 90:624–628

    CrossRef  CAS  PubMed  Google Scholar 

  • Hwang DC, Damodaran S (1996) Chemical modification strategies for synthesis of protein-based hydrogel. J Agric Food Chem 44:751–758

    CrossRef  CAS  Google Scholar 

  • Iqbal HMN, Iqbal HMN, Keshavarz T (2017) Keratin-based materials in biotechnology. In: Handbook of composites from renewable materials. John Wiley & Sons, Inc., Hoboken, NJ, pp 271–288

    CrossRef  Google Scholar 

  • Irissin-Mangata J, Bauduin G, Boutevin B, Gontard N (2001) New plasticizers for wheat gluten films. Eur Polym J 37:1533–1541

    CrossRef  CAS  Google Scholar 

  • Jasveer S, Jianbin X (2018) Comparison of different types of 3D printing technologies. Int J Sci Res Publ 8:7602

    Google Scholar 

  • Jem KJ, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res 3:60–70

    Google Scholar 

  • Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A (2005) Rheology and processing of gluten based bioplastics. Biochem Eng J 26:131–138

    CrossRef  CAS  Google Scholar 

  • Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A (2007a) Egg white-based bioplastics developed by thermomechanical processing. J Food Eng 82:608–617

    CrossRef  CAS  Google Scholar 

  • Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A (2007b) Protein-based bioplastics: effect of thermo-mechanical processing. Rheol Acta 46:711–720

    CrossRef  CAS  Google Scholar 

  • Jiménez-Rosado M, Pérez-Puyana V, Cordobés F, Romero A, Guerrero A (2018) Development of soy protein-based matrices containing zinc as micronutrient for horticulture. Ind Crop Prod 121:345–351

    CrossRef  CAS  Google Scholar 

  • Jiménez-Rosado M, Zárate-Ramírez LS, Romero A, Bengoechea C, Partal P, Guerrero A (2019) Bioplastics based on wheat gluten processed by extrusion. J Clean Prod 239:117994

    CrossRef  CAS  Google Scholar 

  • John J, Tang J, Bhattacharya M (1998) Processing of biodegradable blends of wheat gluten and modified polycaprolactone. Polymer (Guildf) 39:2883–2895

    CrossRef  CAS  Google Scholar 

  • Jones A, Zeller M, Sharma S (2013) Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol. Prog Biomater 2:12

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Karan H, Funk C, Grabert M, Oey M, Hankamer B (2019) Green bioplastics as part of a circular bioeconomy. Trends Plant Sci 24:237–249

    CrossRef  CAS  PubMed  Google Scholar 

  • Kayserilioğlu BŞ, Bakir U, Yilmaz L, Akkaş N (2003) Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour Technol 87:239–246

    CrossRef  PubMed  Google Scholar 

  • Kelly P, Woonton BW, Smithers GW (2009) 8 - Improving the sensory quality, shelf-life and functionality of milk. In: Paquin P (ed) Woodhead Publishing series in food science, technology and nutrition. Woodhead Publishing, Cambridge, pp 170–231

    Google Scholar 

  • Kim KM, Weller CL, Hanna MA, Gennadios A (2002) Heat curing of soy protein films at selected temperatures and pressures. LWT Food Sci Technol 35:140–145

    CrossRef  CAS  Google Scholar 

  • Klockenbusch C, O’Hara JE, Kast J (2012) Advancing formaldehyde cross-linking towards quantitative proteomic applications. Anal Bioanal Chem 404:1057–1067

    CrossRef  CAS  PubMed  Google Scholar 

  • Kowalczyk D, Gustaw W, Świeca Michałand Baraniak B (2014) A study on the mechanical properties of pea protein isolate films. J Food Process Preserv 38:1726–1736

    CrossRef  CAS  Google Scholar 

  • Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 48:775–797

    CrossRef  CAS  PubMed  Google Scholar 

  • Krochta JM (1992) Control of mass transfer in food with edible coatings and films. In: Advances in food engineering. CRC Press, Boca Raton, FL, pp 517–538

    Google Scholar 

  • Krochta JM, Hernández-Izquierdo VM (2008) Thermoplastic processing of proteins for film formation. J Food Sci 73:R30–R39

    CrossRef  PubMed  CAS  Google Scholar 

  • Kutzli I, Gibis M, Baier SK, Weiss J (2018) Fabrication and characterization of food-grade fibers from mixtures of maltodextrin and whey protein isolate using needleless electrospinning. J Appl Polym Sci 135:46328

    CrossRef  CAS  Google Scholar 

  • Kutzli I, Gibis M, Baier SK, Weiss J (2019) Electrospinning of whey and soy protein mixed with maltodextrin – influence of protein type and ratio on the production and morphology of fibers. Food Hydrocoll 93:206–214

    CrossRef  CAS  Google Scholar 

  • Kweon M, Slade L, Levine H (2017) Differential scanning calorimetry analysis of the effects of heat and pressure on protein denaturation in soy flour mixed with various types of plasticizers. J Food Sci 82:314–323

    CrossRef  CAS  PubMed  Google Scholar 

  • Lacroix M, Vu KD, Han JH (2014) Innov Food Packag:277–304

    Google Scholar 

  • Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromolecules 11:533–541

    CrossRef  CAS  PubMed  Google Scholar 

  • Lai H-M, Padua GW (1997) Properties and microstructure of plasticized zein films. Cereal Chem 74:771–775

    CrossRef  CAS  Google Scholar 

  • Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 75:e50492

    Google Scholar 

  • Lestari W, Octavianti F, Jaswir I, Hendri R (2019) Plant-based substitutes for gelatin. In: Contemporary management and science issues in the halal industry. Springer, Singapore, pp 319–322

    CrossRef  Google Scholar 

  • Li MY, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008

    CrossRef  CAS  PubMed  Google Scholar 

  • Li M, Priyadarsi D, Gondi SR, Sumerlin BS (2008) Responsive polymer-protein bioconjugates prepared by RAFT polymerization and copper-catalyzed azide-alkyne click chemistry. Macromol Rapid Commun 29:1172–1176

    CrossRef  CAS  Google Scholar 

  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N (2018) Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J Food Eng 220:20–27

    CrossRef  CAS  Google Scholar 

  • Lim S, Jane J (1994) Storage stability of injection-molded starch-zein plastics under dry and humid conditions. J Environ Polym Degrad 2:111–120

    CrossRef  CAS  Google Scholar 

  • Lim S-T, Jane J-L, Rajagopalan S, Seib PA (1992) Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol Prog 8:51–57

    CrossRef  CAS  Google Scholar 

  • Liu W, Mohanty AK, Askeland P, Drzal LT, Misra M (2004) Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer (Guildf) 45:7589–7596

    CrossRef  CAS  Google Scholar 

  • Liu WJ, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) “Green” composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer (Guildf) 46:2710–2721

    CrossRef  CAS  Google Scholar 

  • Liu B, Jiang L, Zhang J (2010) Development of soy protein/poly(lactic acid) bioplastics. In: Society of Plastic Engineers (ed) Global Plastics Environmental Conference 2010, GPEC 2010

    Google Scholar 

  • Liu Y, Liu D, Wei G, Ma Y, Bhandari B, Zhou P (2018) 3D printed milk protein food simulant: improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innov Food Sci Emerg Technol 49:116–126

    CrossRef  CAS  Google Scholar 

  • Liu Y, Yu Y, Liu C, Regenstein JM, Liu X, Zhou P (2019) Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT Food Sci Technol 102:338–346

    CrossRef  CAS  Google Scholar 

  • López-Castejón ML, Bengoechea C, García-Morales M, Martínez I (2016) Influence of tragacanth gum in egg white based bioplastics: thermomechanical and water uptake properties. Carbohydr Polym 152:62–69

    CrossRef  PubMed  CAS  Google Scholar 

  • Lukubira S, Ogale AA (2013) Thermal processing and properties of bioplastic sheets derived from meat and bone meal. J Appl Polym Sci 130:256–263

    CrossRef  CAS  Google Scholar 

  • Mangavel C, Barbot J, Bervas E, Linossier L, Feys M, Gueèguen J, Popineau Y (2002) Influence of prolamin composition on mechanical properties of cast wheat gluten films. J Cereal Sci 36:157–166

    CrossRef  CAS  Google Scholar 

  • Martin DN (1948) Zein-containing plastic composition. Law Contemp Probl 13:354

    Google Scholar 

  • Martín-Alfonso JE, Felix M, Romero A, Guerrero A, Martín-Alfonso JE, Felix M, Romero A, Guerrero A (2014) Development of new albumen based biocomposites formulations by injection moulding using chitosan as physicochemical modifier additive. Compos Part B Eng 61:275–281

    CrossRef  CAS  Google Scholar 

  • Martín-Alfonso JE, Cuadri AA, Greiner A (2018) The combined effect of formulation and pH on properties of polyethylene oxide composite fiber containing egg albumen protein. Int J Biol Macromol 112:996–1004

    CrossRef  PubMed  CAS  Google Scholar 

  • Martinez I, Partal P, Garcia-Morales M, Guerrero A, Gallegos C (2013) Development of protein-based bioplastics with antimicrobial activity by thermo-mechanical processing. J Food Eng 117:247–254

    CrossRef  CAS  Google Scholar 

  • Martucci JF, Ruseckaite RA, Vázquez A (2006) Creep of glutaraldehyde-crosslinked gelatin films. Mater Sci Eng A 435–436:681–686

    CrossRef  CAS  Google Scholar 

  • McHugh TH, Krochta JM (1994) Water vapor permeability properties of edible whey protein-lipid emulsion films. J Am Oil Chem Soc 71:307–312

    CrossRef  CAS  Google Scholar 

  • Mendes AC, Stephansen K, Chronakis IS (2017) Electrospinning of food proteins and polysaccharides. Food Hydrocoll 68:53–68

    CrossRef  CAS  Google Scholar 

  • Micard V, Morel MH, Bonicel J, Guilbert S (2001) Thermal properties of raw and processed wheat gluten in relation with protein aggregation. Polymer (Guildf) 42:477–485

    CrossRef  CAS  Google Scholar 

  • Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285

    CrossRef  CAS  Google Scholar 

  • Molenveld K, Bos H (2019) Biobased plastics. Wageningen Food & Biobased Research, Wageningen, pp 1–70

    Google Scholar 

  • Mozaffari N, Atefeh Kholdebarin NM (2019) A review: investigation of plastics effect on the environment, bioplastic global market share and its future perspectives. Technol Ecol Saf 5:47–54

    Google Scholar 

  • Mullen AM, Álvarez C, Pojić M, Hadnadev TD, Papageorgiou M (2015) Chapter 2 - Classification and target compounds. In: Galanakis CM (ed) Food waste recovery. Academic Press, San Diego, CA, pp 25–57

    CrossRef  Google Scholar 

  • Muriel-Galet V, Cerisuelo JP, López-Carballo G, Aucejo S, Gavara R, Hernández-Muñoz P (2013) Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control 30:137–143

    CrossRef  CAS  Google Scholar 

  • Murrieta-Martínez CL, Soto-Valdez H, Pacheco-Aguilar R, Torres-Arreola W, Rodríguez-Felix F, Márquez Ríos E (2018) Edible protein films: sources and behavior. Packag Technol Sci 31:113–122

    CrossRef  CAS  Google Scholar 

  • Newson WR (2012) Protein based plastics from the residuals of industrial oil crops

    Google Scholar 

  • Nieuwland M, Geerdink P, Brier P, Van Den Eijnden P, Henket JTMM, Langelaan MLP, Stroeks N, Van Deventer HC, Martin AH (2013) Food-grade electrospinning of proteins. Innov Food Sci Emerg Technol 20:269–275

    CrossRef  CAS  Google Scholar 

  • Nilsuwan K, Guerrero P, de la Caba K, Benjakul S, Prodpran T (2020) Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll 105:105792

    CrossRef  Google Scholar 

  • Noorzai S, Verbeek CJR, Lay MC, Swan J (2019) Collagen extraction from various waste bovine hide sources. Waste Biomass Valoriz 1:1–2

    Google Scholar 

  • Nuthong P, Benjakul S, Prodpran T (2009) Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int J Biol Macromol 44:143–148

    CrossRef  CAS  PubMed  Google Scholar 

  • OECD and Food and Agriculture Organization of the United Nations (2020) Chapter 7 - Dairy and dairy products. In: OECD-FAO Agric Outlook 2020-2029. OECD, Paris, p 330

    Google Scholar 

  • Orliac O, Silvestre F, Rouilly A, Rigal L (2003) Rheological studies, production, and characterization of injection-molded plastics from sunflower protein isolate. Ind Eng Chem Res 42:1674–1680

    CrossRef  CAS  Google Scholar 

  • Otaigbe JU, Adams DO (1997) Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on water absorption and mechanical properties. J Environ Polym Degrad 5:199–208

    CAS  Google Scholar 

  • Oyinloye TM, Yoon WB (2021) Stability of 3D printing using a mixture of pea protein and alginate: precision and application of additive layer manufacturing simulation approach for stress distribution. J Food Eng 288:110127

    CrossRef  CAS  Google Scholar 

  • Oymaci P, Altinkaya SA (2016) Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocoll 54:1–9

    CrossRef  CAS  Google Scholar 

  • Pan H, Li L, Hu L, Cui X (2006) Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer (Guildf) 47:4901–4904

    CrossRef  CAS  Google Scholar 

  • Panwar V, Pal K (2017) Chapter 12 - Dynamic mechanical analysis of clay–polymer nanocomposites. In: Jlassi K, Chehimi MM, Thomas S (eds) Clay-polymer nanocomposites. Elsevier, Amsterdam, pp 413–441

    CrossRef  Google Scholar 

  • Park CH, Lee WI (2012) 3 - Compression molding in polymer matrix composites. In: Advani SG, Hsiao K-T (eds) Woodhead Publishing series in composites science and engineering. Woodhead Publishing, Cambridge, pp 47–94

    Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Review: application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141

    CrossRef  CAS  Google Scholar 

  • Perez V, Felix M, Romero A, Guerrero A (2016) Characterization of pea protein-based bioplastics processed by injection moulding. Food Bioprod Process 97:100–108

    CrossRef  CAS  Google Scholar 

  • Perez-Puyana V, Felix M, Romero A, Guerrero A (2016) Effect of the injection moulding processing conditions on the development of pea protein-based bioplastics. J Appl Polym Sci 133:43306

    CrossRef  CAS  Google Scholar 

  • Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2018) Development of PVA/gelatin nanofibrous scaffolds for tissue engineering via electrospinning. Mater Res Express 5:035401

    CrossRef  CAS  Google Scholar 

  • Perez-Puyana V, Jiménez-Rosado M, Guerrero A, Romero A (2020a) Anisotropic properties of PCL/gelatin scaffolds obtained via electrospinning. Int J Fract 224:269–276

    CrossRef  CAS  Google Scholar 

  • Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2020b) Polymer-based scaffolds for soft-tissue engineering. Polymers (Basel) 12:1566

    CrossRef  CAS  Google Scholar 

  • Perotto G, Ceseracciu L, Simonutti R, Paul U, Guzman-Puyol S, Tran T-N, Bayer I, Athanassiou A (2018) Bioplastics from vegetable waste via an eco-friendly water-based process. Green Chem 20:894–902

    CrossRef  CAS  Google Scholar 

  • Peters T (1975) Serum albumin. In: Puntnam FW (ed) The plasma proteins, 2nd edn. Academic Press, New York, NY, pp 133–181

    CrossRef  Google Scholar 

  • Pietsch VL, Emin MA, Schuchmann HP (2017) Process conditions influencing wheat gluten polymerization during high moisture extrusion of meat analog products. J Food Eng 198:28–35

    CrossRef  CAS  Google Scholar 

  • Pietsch VL, Schöffel F, Rädle M, Karbstein HP, Emin MA (2019a) High moisture extrusion of wheat gluten: modeling of the polymerization behavior in the screw section of the extrusion process. J Food Eng 246:67–74

    CrossRef  CAS  Google Scholar 

  • Pietsch VL, Werner R, Karbstein HP, Emin MA (2019b) High moisture extrusion of wheat gluten: relationship between process parameters, protein polymerization, and final product characteristics. J Food Eng 259:3–11

    CrossRef  CAS  Google Scholar 

  • Pitesky ME, Stackhouse KR, Mitloehner FM (2009) Chapter 1 - Clearing the air: livestock’s contribution to climate change. In: Sparks DL (ed) Advances in agronomy. Academic Press, New York, NY, pp 1–40

    Google Scholar 

  • Plastics Europe (2019) Plastics – the Facts 2019. An analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/application/files/1115/7236/4388/FINAL_web_version_Plastics_the_facts2019_14102019.pdf. Accessed 26 Aug 2020

  • Pleissner D, Lin CSK (2013) Valorisation of food waste in biotechnological processes. Sustain Chem Process 1:21

    CrossRef  CAS  Google Scholar 

  • Pommet M, Redl A, Morel MH, Domenek S, Guilbert S (2003a) Thermoplastic processing of protein-based bioplastics: chemical engineering aspects of mixing, extrusion and hot molding. Macromol Symp 197:207–217

    CrossRef  CAS  Google Scholar 

  • Pommet M, Redl A, Morel MH, Guilbert S (2003b) Study of wheat gluten plasticization with fatty acids. Polymer (Guildf) 44:115–122

    CrossRef  CAS  Google Scholar 

  • Pommet M, Redl A, Guilbert S, Morel MH (2005) Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. J Cereal Sci 42:81–91

    CrossRef  CAS  Google Scholar 

  • Pranata MP, González-Buesa J, Chopra S, Kim K, Pietri Y, Ng PKW, Matuana LM, Almenar E (2019) Egg white protein film production through extrusion and calendering processes and its suitability for food packaging applications. Food Bioprocess Technol 12:714–727

    CrossRef  CAS  Google Scholar 

  • Raeker M, Johnson LA (1995) Thermal and functional properties of bovine blood plasma and egg white proteins. J Food Sci 60:685–690

    CrossRef  CAS  Google Scholar 

  • Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    CrossRef  Google Scholar 

  • Ramakrishnan N, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358

    CrossRef  CAS  PubMed  Google Scholar 

  • Ranganathan J, Vennard D, Waite R, Dumas P, Lipinski B, Searchinger T (2016) Shifting diets Toward a sustainable food future. Creat Sust Food Future 11:90

    Google Scholar 

  • Razzaq HAA, Pezzuto M, Santagata G, Silvestre C, Cimmino S, Larsen N, Duraccio D (2016) Barley β-glucan-protein based bioplastic film with enhanced physicochemical properties for packaging. Food Hydrocoll 58:276–283

    CrossRef  CAS  Google Scholar 

  • Reddy DJP, Rajulu AV, Arumugam V, Naresh MD, Muthukrishnan M (2009) Effects of resorcinol on the mechanical properties of soy protein isolate films. J Plast Film Sheet 25:221–233

    CrossRef  CAS  Google Scholar 

  • Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S (1999) Extrusion of wheat gluten plasticized with glycerol: influence of process conditions on flow behavior, rheological properties, and molecular size distribution. Cereal Chem 76:361–370

    CrossRef  CAS  Google Scholar 

  • Regev O, Khalfin R, Zussman E, Cohen Y (2010) About the albumin structure in solution and related electro-spinnability issues. Int J Biol Macromol 47:261–265

    CrossRef  CAS  PubMed  Google Scholar 

  • Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA (2000) Solubility, tensile, and color properties of modified soy protein isolate films. J Agric Food Chem 48:4937–4941

    CrossRef  CAS  PubMed  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    CrossRef  CAS  Google Scholar 

  • Ricci L, Umiltà E, Righetti MC, Messina T, Zurlini C, Montanari A, Bronco S, Bertoldo M (2018) On the thermal behavior of protein isolated from different legumes investigated by DSC and TGA. J Sci Food Agric 98:5368–5377

    CrossRef  CAS  PubMed  Google Scholar 

  • Robertson GL (2016) Food packaging: principles and practice, 3rd edn. CRC press, Boca Raton, FL

    CrossRef  Google Scholar 

  • Ryder K, Ali MA, Billakanti J, Carne A (2020) Evaluation of dairy co-product containing composite solutions for the formation of bioplastic films. J Polym Environ 28:725–736

    CrossRef  CAS  Google Scholar 

  • Saenghirunwattana P, Noomhorm A, Rungsardthong V (2014) Mechanical properties of soy protein based “green” composites reinforced with surface modified cornhusk fiber. Ind Crop Prod 50:144–150

    CrossRef  CAS  Google Scholar 

  • Sanders B (2018) Global animal slaughter statistics and charts. Faunalytics. https://faunalytics.org/global-pig-slaughter-statistics-and-charts/. Accessed 18 Aug 2020

  • Santosa FXB, Padua GW (1999) Tensile properties and water absorption of zein sheets plasticized with oleic and linoleic acids. J Agric Food Chem 47:2070–2074

    CrossRef  CAS  Google Scholar 

  • Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

    CrossRef  CAS  Google Scholar 

  • Schulze C, Juraschek M, Herrmann C, Thiede S (2017) Energy analysis of bioplastics processing. Proc CIRP 61:600–605

    CrossRef  Google Scholar 

  • Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644

    CrossRef  CAS  Google Scholar 

  • Shah A, Tyagi S, Bharagava RN, Belhaj D, Kumar A, Saxena G, Saratale GD, Mulla SI (2019) Keratin production and its applications: current and future perspective. In: Sharma S, Kumar A (eds) Keratin as a protein biopolymer, Springer series on polymer and composite materials. Springer, Cham, pp 19–34

    CrossRef  Google Scholar 

  • Sharif MK, Saleem M, Javed K (2018) Chapter 15 - Food materials science in egg powder industry. In: Grumezescu AM, Holban AM (eds) Role of materials science in food bioengineering. Academic Press, New York, NY, pp 505–537

    Google Scholar 

  • Sharma S, Luzinov I (2013) Whey based binary bioplastics. J Food Eng 119:404–410

    CrossRef  CAS  Google Scholar 

  • Sharma L, Singh C (2016) Sesame protein based edible films: development and characterization. Food Hydrocoll 61:139–147

    CrossRef  CAS  Google Scholar 

  • Sharma HP, Madan A, Joshi DC (2019) Clarifying agents. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic Press, Oxford, pp 53–60

    CrossRef  Google Scholar 

  • Shi W, Dumont M-J (2014a) Processing and physical properties of canola protein isolate-based films. Ind Crop Prod 52:269–277

    CrossRef  CAS  Google Scholar 

  • Shi W, Dumont MJ (2014b) Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. J Mater Sci 49:1915–1930

    CrossRef  CAS  Google Scholar 

  • Shubhra QTH, Alam AKMM, Beg MDH (2011) Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater Lett 65:333–336

    CrossRef  CAS  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192

    CrossRef  CAS  Google Scholar 

  • Slade L, Levine H, Ievolella J, Wang M (1993) The glassy state phenomenon in applications for the food industry: application of the food polymer science approach to structure--function relationships of sucrose in cookie and cracker systems. J Sci Food Agric 63:133–176

    CrossRef  CAS  Google Scholar 

  • Sochava IV, Smirnova OI (1993) Heat capacity of hydrated and dehydrated globular proteins. Denaturation increment of heat capacity. Food Hydrocoll 6:513–524

    CrossRef  CAS  Google Scholar 

  • Sohail SS, Wang B, Biswas MAS, Oh JH (2006) Physical, morphological, and barrier properties of edible casein films with wax applications. J Food Sci 71:C225–C229

    CrossRef  CAS  Google Scholar 

  • Song F, Tang D-LL, Wang X-LL, Wang Y-ZZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12:3369–3380

    CrossRef  CAS  PubMed  Google Scholar 

  • Sothornvit R, Krochta JM (2000a) Plasticizer effect on oxygen permeability of β-lactoglobulin films. J Agric Food Chem 48:6298–6302

    CrossRef  CAS  PubMed  Google Scholar 

  • Sothornvit R, Krochta JM (2000b) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J Agric Food Chem 48:3913–3916

    CrossRef  CAS  PubMed  Google Scholar 

  • Sothornvit R, Krochta JM (2000c) Water vapor permeability and solubility of films from hydrolyzed whey protein. J Food Sci 65:700–703

    CrossRef  CAS  Google Scholar 

  • Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50:149–155

    CrossRef  Google Scholar 

  • Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk ID (2017) Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll 70:345–355

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence KE, Allen AL, Wang S, Jane J (1996) Soil and marine biodegradation of protein—starch plastics. In: Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washington, DC, pp 12–149

    Google Scholar 

  • Stevens L (1991) Egg white proteins. Comp Biochem Physiol Part B Comp Biochem 100:1–9

    CrossRef  CAS  Google Scholar 

  • Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int 107:528–535

    CrossRef  CAS  PubMed  Google Scholar 

  • Sullivan ST, Tang C, Kennedy A, Talwar S, Khan SA (2014) Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll 35:36–50

    CrossRef  CAS  Google Scholar 

  • Sun S, Song Y, Zheng Q (2007) Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocoll 21:1005–1013

    CrossRef  CAS  Google Scholar 

  • Sun S, Song Y, Zheng Q (2008) Morphology and mechanical properties of thermo-molded bioplastics based on glycerol-plasticized wheat gliadins. J Cereal Sci 48:613–618

    CrossRef  CAS  Google Scholar 

  • Tatara RA (2011) 17 - Compression molding. In: Kutz M (ed) Plastics design library. William Andrew Publishing, Oxford, pp 289–309

    Google Scholar 

  • Tatara RA (2017) 14 - Compression molding. In: Kutz M (ed) Plastics design library, 2nd edn. William Andrew Publishing, Oxford, pp 291–320

    Google Scholar 

  • Teigiserova DA, Hamelin L, Thomsen M (2019) Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour Conserv Recycl 149:413–426

    CrossRef  Google Scholar 

  • Temming RP, Eggermont L, van Eldijk MB, van Hest JCM, van Delft FL (2013) N-terminal dual protein functionalization by strain-promoted alkyne–nitrone cycloaddition. Org Biomol Chem 11:2772–2779

    CrossRef  CAS  PubMed  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:89

    CrossRef  CAS  Google Scholar 

  • Tesfaye T, Sithole B, Ramjugernath D (2017) Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects. Clean Techn Environ Policy 19:2363–2378

    CrossRef  Google Scholar 

  • Thammahiwes S, Riyajan S-A, Kaewtatip K (2017) Preparation and properties of wheat gluten based bioplastics with fish scale. J Cereal Sci 75:186–191

    CrossRef  CAS  Google Scholar 

  • Thorn DC, Ecroyd H, Carver JA (2014) Chapter 30 - Polymorphism in casein protein aggregation and amyloid fibril formation. In: Uversky VN, Lyubchenko YL (eds) Bio-nanoimaging. Academic Press, Boston, MA, pp 323–331

    CrossRef  Google Scholar 

  • Tian H, Guo G, Xiang A, Zhong WH (2018) Intermolecular interactions and microstructure of glycerol-plasticized soy protein materials at molecular and nanometer levels. Polym Test 67:197–204

    CrossRef  CAS  Google Scholar 

  • Tihminlioglu F, Atik İD, Özen B (2010) Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. J Food Eng 96:342–347

    CrossRef  CAS  Google Scholar 

  • Tkaczyk AH, Otaigbe JU, Ho KLG (2001) Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on biodegradability. J Polym Environ 9:19–23

    CrossRef  CAS  Google Scholar 

  • Trende A, Åström BT, Nilsson G (2000) Modelling of residual stresses in compression moulded glass-mat reinforced thermoplastics. Compos Part A Appl Sci Manuf 31:1241–1254

    CrossRef  Google Scholar 

  • Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644

    CrossRef  CAS  PubMed  Google Scholar 

  • Tummala P, Liu W, Drzal LT, Mohanty AK, Misra M (2006) Influence of plasticizers on thermal and mechanical properties and morphology of soy-based bioplastics. Ind Eng Chem Res 45:7491–7496

    CrossRef  CAS  Google Scholar 

  • Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci 289:159–168

    CrossRef  CAS  Google Scholar 

  • Uchikawa H (2001) Specialized techniques. In: Ramachandran VS, Beaudoin JJ (eds) Handbook of analytical techniques in concrete science and technology. Elsevier, Amsterdam, pp 820–934

    CrossRef  Google Scholar 

  • Ullsten NH, Cho S-W, Spencer G, Gällstedt M, Johansson E, Hedenqvist MS (2009) Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid. Biomacromolecules 10:479–488

    CrossRef  CAS  PubMed  Google Scholar 

  • Ullsten NH, Gällstedt M, Spencer GM, Johansson E, Marttila S, Ignell R, Hedenqvist MS (2010) Extruded high quality materials from wheat gluten. Polym Renew Resour 1:173–186

    CAS  Google Scholar 

  • Vaz CM, Van Doeveren PFNM, Reis RL, Cunha AM (2003) Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer (Guildf) 44:5983–5992

    CrossRef  CAS  Google Scholar 

  • Verbeek CJR, van den Berg LE (2010) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng 295:10–21

    CrossRef  CAS  Google Scholar 

  • Verbeek CJR, van den Berg LE (2011) Development of proteinous bioplastics using bloodmeal. J Polym Environ 19:1–10

    CrossRef  CAS  Google Scholar 

  • Verbeek CJR, Low A, Lay MC, Hicks TM (2017) Processability and mechanical properties of bioplastics produced from decoloured bloodmeal. Adv Polym Technol 37:2102–2113

    Google Scholar 

  • Wang Y, Chen L (2012) Electrospinning of prolamin proteins in acetic acid: the effects of protein conformation and aggregation in solution. Macromol Mater Eng 297:902–913

    CrossRef  CAS  Google Scholar 

  • Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81

    CrossRef  Google Scholar 

  • Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114:292–302

    CrossRef  CAS  Google Scholar 

  • Wongsasulak S, Kit KM, McClements DJ, Yoovidhya T, Weiss J (2007) The effect of solution properties on the morphology of ultrafine electrospun egg albumen-PEO composite fibers. Polymer (Guildf) 48:448–457

    CrossRef  CAS  Google Scholar 

  • Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T (2010) Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng 98:370–376

    CrossRef  CAS  Google Scholar 

  • Xiaoqun M, Susan SX, Youqi W (1999) Effects of molding temperature and pressure on properties of soy protein polymers. J Appl Polym Sci 73:2595–2602

    CrossRef  Google Scholar 

  • Xu Y, Wu Q, Lei Y, Yao F (2010) Creep behavior of bagasse fiber reinforced polymer composites. Bioresour Technol 101:3280–3286

    CrossRef  CAS  PubMed  Google Scholar 

  • Yamada M, Morimitsu S, Hosono E, Yamada T (2020) Preparation of bioplastic using soy protein. Int J Biol Macromol 149:1077–1083

    CrossRef  CAS  PubMed  Google Scholar 

  • Ye P, Reitz L, Horan C, Parnas R (2006) Manufacture and biodegradation of wheat gluten/basalt composite material. J Polym Environ 14:1–7

    CrossRef  CAS  Google Scholar 

  • Yoon J, Kim JM (2008) Fabrication of conjugated polymer supramolecules in electrospun micro/nanofibers. Macromol Chem Phys 209:219

    CrossRef  Google Scholar 

  • Yue HB, De Cui Y, Yin GQ, Jia ZY, Liao LW (2011) Environment-friendly cottonseed protein bioplastics: preparation and properties. Adv Mater Res 311–313:1518–1521

    CrossRef  CAS  Google Scholar 

  • Yue HB, Cui YD, Shuttleworth PS, Clark JH (2012) Preparation and characterisation of bioplastics made from cottonseed protein. Green Chem 14:2009–2016

    CrossRef  CAS  Google Scholar 

  • Zadow JG (2003) Whey and whey powders | protein concentrates and fractions. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 6152–6157

    CrossRef  Google Scholar 

  • Zang X-X, Wu J, Pan S-Y, Xu X-Y (2015) Effect of protein and lipid content on yuba film-formation. Mod Food Sci Technol 31:129–135

    CAS  Google Scholar 

  • Zárate-Ramirez LS, Martinez I, Romero A, Partal P, Guerrero A (2011) Wheat gluten-based materials plasticised with glycerol and water by thermoplastic mixing and thermomoulding. J Sci Food Agric 91:625–633

    CrossRef  PubMed  CAS  Google Scholar 

  • Zárate-Ramírez LS, Romero A, Bengoechea C, Partal P, Guerrero A (2014a) Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics. Carbohydr Polym 112:24–31

    CrossRef  PubMed  CAS  Google Scholar 

  • Zárate-Ramírez LS, Romero A, Martínez I, Bengoechea C, Partal P, Guerrero A (2014b) Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food Bioprod Process 92:20–29

    CrossRef  CAS  Google Scholar 

  • Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6:1484–1488

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer (Guildf) 42:2569–2578

    CrossRef  CAS  Google Scholar 

  • Zhang J, Ma D, Du D, Xi Z, Yi L (2014) An efficient reagent for covalent introduction of alkynes into proteins. Org Biomol Chem 12:9528–9531

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Q, Rempel C (2018) Processing and characteristics of canola protein-based biodegradable packaging: a review. Crit Rev Food Sci Nutr 58:475–485

    CAS  PubMed  Google Scholar 

  • Zhou JJ, Wang SY, Gunasekaran S (2009) Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J Food Sci 74:N50–N56

    CrossRef  CAS  PubMed  Google Scholar 

  • Zink J, Wyrobnik T, Prinz T, Schmid M (2016) Physical, chemical and biochemical modifications of protein-based films and coatings: an extensive review. Int J Mol Sci 17:1376

    CrossRef  PubMed Central  CAS  Google Scholar 

  • Zubeldía F, Ansorena MR, Marcovich NE (2015) Wheat gluten films obtained by compression molding. Polym Test 43:68–77

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Spanish “Ministerio de Ciencia e Innovación (MCI)/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER, UE)”, through the project RTI2018-097100-B-C21, and through the PhD Grant: PRE2019-089815. The authors would like to thank their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bengoechea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez-Castillo, E., Bengoechea, C., Felix, M., Guerrero, A. (2021). Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications. In: Kuddus, M., Roohi (eds) Bioplastics for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-1823-9_5

Download citation