Abstract
Bioplastics are the plastics composed from the biomass of corn, sugarcane, etc., which nowadays form an eco-friendly system that saves fuel burning, CO2 emission, and plastic. There are emerging interests in agro-based research packaging for designing cost-effective bioplastics, thanks to the heavy burden of diseases from petroleum products. Plastic industries are among the foremost important and regularly applied industries within the globe, and they are widely employed due to its biodegradability nature. Polyhydroxybutyrate (PHB) and polyhydroxyalkanoate (PHA) are naturally produced by microorganisms that can be considered as a substitute for the standard plastics. These biodegradable materials are currently providing a sustainable alternative to petroleum feedstock. Mostly, biodegradable polymers get hydrolyzed into biomass, CH4, CO2, and other inorganic compounds. The utilization of bioorigin materials in food packaging has led to the tremendous innovation during last couple of years, which were obtained through microbial fermentations (e.g., starch and cellulose). The plant-based bioplastics are considered to be more durable, cost-effective, chemical independent, highly immune to microwaves, and less brittle. It is concluded that the assembly and use of bioplastics will aid in the sustainability of the environment by reducing greenhouse gases (GHGs), reduction in waste biomass, and as a substitute to petroplastics.
Keywords
- Bioplastics
- Pros and cons of bioplastics
- Applications
- Production of bioplastics
This is a preview of subscription content, access via your institution.
Buying options




References
Abreu ASLM, de Moura IG, de Sá AV, Machado AVA (2017) Biodegradable polymernanocomposites for packaging applications. In: Grumezescu AM (ed) Food packaging: nanotechnology in the agri-food industry, vol 7. Academic Press/Elsevier, London, pp 329–363. https://doi.org/10.1016/B978-0-12-804,302-8.00010-8
Adriano-Anaya M, Salvador-Figueroa M, Ocampo JA, García-Romera I (2005) Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbios 40:151–156
Agarwal SK (1998) Environmental biotechnology. APH Publishing, New Delhi
Albertsson AC, Karlsson S (1995) Degradable polymers for the future. Acta Polym 46(2):114–123. https://doi.org/10.1002/actp.1995.010460203
Ali A, Yu L, Liu H, Khalid S, Meng L, Chen L (2017) Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. J Appl Polym Sci 134(32):45159. https://doi.org/10.1002/app.45159
Allard A-S, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeter Biodegr 39(4):253–285
Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144. https://doi.org/10.1002/(SICI)1097-0126(1998100)
Amelia TSM, Govindasamy S, Tamothran AM, Vigneswari S, Bhubalan K (2019) Applications of PHA in agriculture. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanoates, 1st edn. Springer Nature, Singapore, pp 347–361. https://doi.org/10.1007/978-981-13-3759-8_13
Anastas PT, Warner JC (1998) Green chemistry. Chem Soc Rev 640:301–312. https://doi.org/10.1039/B918763B
Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, de Oliveira Camargo FA (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81(9):1149–1154. https://doi.org/10.1016/j.chemosphere.2010.09.047
Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76(2):287–308. https://doi.org/10.1007/s00253-007-1018-5
Andrews M (2014) Mirel™ PHA polymeric modifiers & additives. In: Proceeding from AddCom 2014 conference, Novotel Barcelona, Spain, pp 21–22
Ardito CP, Billings JF (1990) Alternative remediation strategies: The subsurface volatilization and ventilation system. In: Petroleum hydrocarbons and organic chemicals in ground water prevention, detection, and restoration, Houston, Texas, USA
Arikan EB, Ozsoy HD (2015) A review: investigation of bioplastics. J Civ Eng Arch 9:188–192. https://doi.org/10.17265/1934-7359/2015.02.007
Arora PK, Kumar M, Chauhan A, Raghava GPS, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2(1):67. https://doi.org/10.1186/1756-0500-2-67
Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):1008. https://doi.org/10.3390/ma10091008
Asaf Kleopas S (2008) Synthesis and properties of starch based bio-materials. PhD Thesis, University of Groningen, Groningen
Atlas RM, Philp J (2005) Bioremediation: Applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, DC
Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474. https://doi.org/10.1016/j.foodchem.2004.10.024
Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A (2008) Poly (lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108(6):3542–3551. https://doi.org/10.1002/app.28004
Avérous L, Fringant C, Martin O (1999) Coextrusion of biodegradable starch-based materials. In: Paper presented at the Biopolymer science: food and non food applications - Colloques de l’INRA Montpellier, INRA, France, September 28–30, 1998
Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymers 41(11):4157–4167. https://doi.org/10.1016/S0032-3861(99)00636-9
Bakraji EH, Karajou J (2003) Determination of trace elements in Syrian bentonite clay using X-ray fluorescence technique and discussion on the health implication on pregnant women. J Trace Microprobe Technol 21(2):397–405. https://doi.org/10.1081/TMA-120020274
Barletta M, Aversa C, Puopolo M (2020) Recycling of PLA-based bioplastics: the role of chain-extenders in twin-screw extrusion compounding and cast extrusion of sheets. J Appl Polym Sci 137(42):49292. https://doi.org/10.1002/app.49292
Bastioli C (2002) Starch-polymer composites. In: Degradable polymers. Wiley Online Library, Encyclopedia of polymer science and technology, pp 133–161. https://doi.org/10.1007/978-94-017-1217-0_6
Beena AK, Geevarghese PI (2010) A solvent tolerant thermostable protease from a psychrotrophic isolate obtained from pasteurized milk. Dev Microbiol Mol Biol 1:113–119
Benn N, Zitomer D (2018) Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics. Front Environ Sci 5:93. https://doi.org/10.3389/fenvs.2017.00093
Bennett K (1999) In-situ treatment of soil contaminated by benzene (a BTEX compound). University of Minnesota, Minneapolis, MN
Berger E, Ramsay BA, Ramsay JA, Chavarie C, Braunegg G (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Techn 3:227–232. https://doi.org/10.1007/BF01876053
Berlanga M, Montero MT, Fernandez-Borrell J, Guerrero R (2006) Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9(2):95
Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579. https://doi.org/10.1007/s10924-012-0456-z
Bharti SN, Swetha G (2016) Need for bioplastics and role of biopolymer PHB: a short review. J Pet Environ Biotechnol 7(272):2. https://doi.org/10.4172/2157-7463.1000272
Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25(3):371–401. https://doi.org/10.1016/S0079-6700(00)00009-5
Bhubalan K, Lee WH, Loo CY, Yamamoto T, Tsuge T, Maeda M, Sudesh K (2007) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer. In: 56th SPSJ Annual Meeting, Japan, 2007. The Society of Polymer Science, Japan, pp 2235–2235
Bilo F, Pandini S, Sartore L, Depero LE, Gargiulo G, Bonassi A, Federici S, Bontempi E (2018) A sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368. https://doi.org/10.1016/j.jclepro.2018.07.252
Bledzki AK, Mamun AA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Expr Polym Lett 1(11):755–762
Bledzki AK, Jaszkiewicz A, Scherzer D (2008) Natural fibre and biocomposites for technical applications. Bioplastics Mag 3(02):12–15
Bledzki AK, Faruk O, Jaszkiewicz A (2010) Cars from renewable materials. Kompozyty 10(3):282–288
Board N (2006) The complete book on biodegradable plastics and polymers (recent developments properties, analyses, materials & processes). Asia Pacific Business Press, Delhi
Bollag J-M, Dec J, Krishnan SB (1998) Use of plant material for the removal of pollutants by polymerization and binding to humic substances. Center for Bioremediation and Detoxification, Environmental Resources Research Institute, Pennsylvania State University, University Park, PA
Bond EB, Noda I (2006) Polyhydroxyalkanoate copolymer/starch compositions for laminates and films. USA Patent
Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67. https://doi.org/10.1016/S0960-8524(99)00144-3
Brar SK, Verma M, Surampalli RY, Misra K, Tyagi RD, Meunier N, Blais JF (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Radioactive Waste Manag 10(2):59–72
Brehmer B (2014) Bio-based plastics: materials and applications. Wiley, Hoboken, NJ
Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12(2):65–81. https://doi.org/10.1023/B:JOOE.0000010052.86786.ef
Cacciotti I, Ciocci M, Di Giovanni E, Nanni F, Melino S (2018) Hydrogen sulfide-releasing fibrous membranes: potential patches for stimulating human stem cells proliferation and viability under oxidative stress. Int J Mol Sci 19(8):2368. https://doi.org/10.3390/ijms19082368
Calabrò PS, Grosso M (2018) Bioplastics and waste management. Waste Manag 78:800–801. https://doi.org/10.1016/j.wasman.2018.06.054
Cărpuş E, Dorogan A, Burnichi F (2018) Agrotextile systems-strategic elements for sustainable development of the agriculture. In: Seventh International Conference on Advanced Materials and Systems (ICAMS), 2018. The National Research & Development Institute for Textiles and Leather-INCDTP, pp 307–311. https://doi.org/10.24264/icams-2018.VI.4
Carvalho AJF (2008) Starch: major sources, properties and applications as thermoplastic materials. In: Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 321–342. https://doi.org/10.1016/B978-0-08-045316-3.00015-6
Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Thermoplastic starch/natural rubber blends. Carbohydr Polym 53(1):95–99. https://doi.org/10.1016/S0144-8617(03)00005-5
Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100(23):5996–6009. https://doi.org/10.1016/j.biortech.2009.03.088
Castilla-Archilla J, O’Flaherty V, Lens PNL (2019) Biorefineries: industrial innovation and tendencies. In: Bastidas-Oyanede IR, Schmidt JE (eds) Biorefinery. Springer, Cham, pp 3–35. https://doi.org/10.1007/978-3-030-10,961-5_1
Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237. https://doi.org/10.1080/10408690490464276
Chatham H (1996) Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Technol 78(1–3):1–9
Chen YJ (2014) Bioplastics and their role in achieving global sustainability. J Chem Pharma Res 6(1):226–231
Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61(4):455–463. https://doi.org/10.1016/j.carbpol.2005.06.020
Chibuike GU, Obiora SC (2013) Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int J Environ Sci 4(3):223–239. https://doi.org/10.6088/ijes.2014040404524
Chibuike GU, Obiora SC (2014) Bioremediation of hydrocarbon-polluted soils for improved crop performance. Int J Environ Sci 4(5):840–858
Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sust Energy Rev 71:555–562. https://doi.org/10.1016/j.rser.2016.12.083
Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8(4):305–313
Chinnaswamy R, Hanna MA, Zobel HF (1989) Microstructural, physiochemical, and macromolecular changes in extrusion-cooked and retrograded corn starch. Cereal Foods World 34:415–422
Chivrac F, Pollet E, Averous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng A 67(1):1–17. https://doi.org/10.1016/j.mser.2009.09.002
Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioproc Eng 17(6):335–342
Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51(1):13–21. https://doi.org/10.1007/s002530051357
Colberg PJ, Young LY (1995) Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron, or sulfate reduction. In: Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 307–330
Comstock K, Farrell D, Godwin C, Xi Y (2004) From hydrocarbons to carbohydrates: food packaging of the future. Southeast Asia Consult and Resource, Bangkok, Thailand
Coudane J, Ustariz-Peyret C, Schwach G, Vert M (1997) More about the stereodependence of DD and LL pair linkages during the ring-opening polymerization of racemic lactide. J Polym Sci Pt A Polym Chem 35(9):1651–1658
Curvelo AAS, De Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr Polym 45(2):183–188. https://doi.org/10.1016/S0144-8617(00)00314-3
Cyras VP, Commisso MS, Mauri AN, Vázquez A (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756. https://doi.org/10.1002/app.26663
Daigger GT, Grady CPL (1982) An assessment of the role of physiological adaptation in the transient response of bacterial cultures. Biotechnol Bioeng 24(6):1427–1444. https://doi.org/10.1002/bit.260240614
Dallyn H, Shorten D (1988) Hygiene aspects of packaging in the food industry. Int Biodeter 24(4–5):387–392. https://doi.org/10.1016/0265-3036(88)90025-5
Darani KK, Mozafari MR (2010) Supercritical fluids technology in bioprocess industries: a review. J Biochem Technol 2(1):144–152
Divya G, Archana T, Manzano RA (2013) Polyhydroxy alkanoates—a sustainable alternative to petro-based plastics. J Pet Environ Biotechnol 4:2
Divyashree MS, Shamala TR (2010) Extractability of polyhydroxyalkanoate synthesized by Bacillus flexus cultivated in organic and inorganic nutrient media. Indian J Microbiol 50(1):63–69. https://doi.org/10.1007/s12088-010-0013-1
Dupont RR, Doucette WJ, Hinchee RE (1991) Assessment of in situ bioremediation potential and the application of bioventing at a fuel-contaminated site. In: In situ bioreclamation. Butterworth, Stoneham, MA, pp 262–282
Durner D, Weber F, Neddermeyer J, Koopmann K, Winterhalter P, Fischer U (2010) Sensory and color changes induced by microoxygenation treatments of Pinot noir before and after malolactic fermentation. Am J Enol Viticult 61(4):474–485. https://doi.org/10.5344/ajev.2010.09122
Ebnesajjad S (2012) Handbook of biopolymers and biodegradable plastics: properties, processing and applications. Elsevier, Amsterdam
Ehrenhauser FS (2015) PAH and IUPAC nomenclature. Polycyclic Arom Comp 35(2–4):161–176. https://doi.org/10.1080/10406638.2014.918551
Eliasson A-C (1994) Interactions between starch and lipids studied by DSC. Thermochim Acta 246(2):343–356
Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77(3):289–311. https://doi.org/10.1002/(SICI)1097-0010(199807)
Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006
Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012
Farhadian M, Larroche C, Borghei M, Troquet J, Vachelard C (2006) Bioremediation of BTEX-contaminated groundwater through bioreactors. 4 ème Colloque Franco-Roumain de chimie appliquée. Université Blaise Pascal, France
Fetzner S (2002) Oxygenases without requirement for cofactors or metal ions. Appl Microbiol Biotechnol 60(3):243–257. https://doi.org/10.1007/s00253-002-1123-4
Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58(4):641–685
Fiorese ML, Freitas F, Pais J, Ramos AM, de Aragão GMF, Reis MAM (2009) Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1, 2-propylene carbonate. Eng Life Sci 9(6):454–461. https://doi.org/10.1002/elsc.200900034
Fisher M, Kolb J, Cole S (2007) Enhancing future automotive safety with plastics. In: The 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), pp 07–0451
Fringant C, Desbrieres J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: relation with their molecular characteristics. Polymers 37(13):2663–2673
Fukushima T, Sumihiro Y, Koyanagi K, Hashimoto N, Kimura Y, Sakai T (2000) Development of a direct polycondensation process for poly (L-lactic acid). Int Polym Proc 15(4):380–385. https://doi.org/10.3139/217.1615
Gadhave RV, Das A, Mahanwar PA, Gadekar PT (2018) Starch based bio-plastics: the future of sustainable packaging. Open J Polym Chem 8(2):21–33. https://doi.org/10.4236/ojpchem.2018.82003
Gangopadhyay UK, Hira M (2010) Towards popularising agrotextiles in India. Manmade Textiles India 53(2):41–46
Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J 12(6):541–553. https://doi.org/10.1016/S0958-6946(02)00038-9
Gentry T, Rensing C, Pepper IAN (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34(5):447–494. https://doi.org/10.1080/10643380490452362
Getachew A, Woldesenbet F (2016) Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res Notes 9(1):509–517. https://doi.org/10.1186/s13104-016-2321-y
Ghalem BR, Mohamed B (2008) Antibacterial activity of leaf essential oils of Eucalyptus globulus and Eucalyptus camaldulensis. African J Pharm Pharmacol 2(10):211–215. https://doi.org/10.5897/AJPP.9000039
Ghosh SK, Bhattacharyya R, Mondal MM (2014) A review on jute geotextile-Part 1. Int J Res Eng Technol 3(2):378–386
Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61(6):2408–2413
Gill M (2014) Bioplastic: a better alternative to plastics. Int J Res Appl Nat Sci 2(8):115–120
Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43(15):5222–5229. https://doi.org/10.1007/s10853-008-2762-3
Greene JP (2014) Sustainable plastics: environmental assessments of biobased, biodegradable, and recycled plastics. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118899595
Greenwood JE, Schmitt BJ, Wagstaff MJD (2018) Experience with a synthetic bilayer biodegradable temporising matrix in significant burn injury. Burns Open 2(1):17–34. https://doi.org/10.1016/j.burnso.2017.08.001
Greve HH (1993) Natural rubber. In: Ullmann’s encyclopedia of industrial chemistry, vol 23. VCH, Weinheim, p 225
Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807. https://doi.org/10.1126/science.297.5582.803
Guettler BE (2009) Soy-polypropylene biocomposites for automotive applications. PhD Thesis, University of Waterloo, Canada
Guilbot A, Mercier C (1985) The polysaccharides. Mol Biol 3:209–282
Guo M, Stuckey DC, Murphy RJ (2013) End-of-life of starch–polyvinyl alcohol biopolymers. Bioresour Technol 127:256–266. https://doi.org/10.1016/j.biortech.2012.09.093
Hahn SK, Chang YK, Kim BS, Lee KM, Chang HN (1993) The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Techn 7(3):209–212
Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24(6):805–812. https://doi.org/10.1007/s11274-007-9543-z
Hangzhen ZZJM (2001) Study on the direct polycondensation of polylactic acid. Synth Fiber China 30:3
Hangzhen WZZYM, Bing Y (2002) Study on the direct synthesis of polylactic acid through melt polycondensation. Synth Fiber China 31:11–13
Harracksingh R (2012) Bioplastics near commercialization. ICIS Chem Bus:32
Hassan MK, Abou-Hussein R, Zhang X, Mark JE, Noda I (2006) Biodegradable copolymers of 3-hydroxybutyrate-co-3-hydroxyhexanoate (NodaxTM), including recent improvements in their mechanical properties. Mol Cryst Liq Cryst 447(1):23–341. https://doi.org/10.1080/15421400500380028
Havstad MR (2020) Biodegradable plastics. In: Letcher T (ed) Plastic waste and recycling, 1st edn. Academic Press, Cambridge, MA, pp 97–129
Hejazi P, Vasheghani-Farahani E, Yamini Y (2003) Supercritical fluid disruption of Ralstonia eutropha for poly (β-hydroxybutyrate) recovery. Biotechnol Prog 19(5):1519–1523. https://doi.org/10.1021/bp034010q
Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P, Zeyer J (1997) In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63(6):2136–2141
Hinchee RE, Downey DC, Coleman EJ (1987) Enhanced bioreclamation, soil venting and ground-water extraction: a cost-effectiveness and feasibility comparison. In: Proceedings of API/NWWA Conference: Petroleum Hydrocarbons in the Subsurface Environment, Columbus, OH, pp 147–164
Hinchee RE, Miller RN, Dupont RR (1991) Enhanced biodegradation of petroleum hydrocarbons: an air-based in situ process. J Hazard Mater 27(3):315–325
Hiner ANP, Ruiz JH, López JNR, Cánovas FGA, Brisset NC, Smith AT, Arnao MB, Acosta M (2002) Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide catalase-like activity, compound III formation, and enzyme inactivation. J Biol Chem 277(30):26879–26,885. https://doi.org/10.1074/jbc.M200002200
Höfer R, Selig M (2012) Green chemistry and green polymer chemistry. In: Green polymer chemistry: biocatalysis and biomaterials, vol 1043. Elsevier, Amsterdam, pp 1–14. https://doi.org/10.1021/bk-2010-1043.ch001
Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37(1):427–446. https://doi.org/10.1146/annurev.phyto.37.1.427
Holmes PA, Lim GB (1990) Separation process. USA Patent
Hu R, Lim J-K (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Composit Mater 41(13):1655–1669. https://doi.org/10.1177/0021998306069878
Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221–4229. https://doi.org/10.1007/s10853-005-1998-4
Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composit Interf 15(2–3):169–191. https://doi.org/10.1163/156855408783810920
Iturbe R, Flores C, Chavez C, Bautista G, Torres LG (2004) Remediation of contaminated soil using soil washing and biopile methodologies at a field level. J Soils Sedim 4(2):115
Jabeen N, Majid I, Nayik GA (2015) Bioplastics and food packaging: a review. Cogent Food Agric 1(1):1117749
Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compreh Rev Food Sci Food Saf 9(5):552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
Jariyasakoolroj P, Leelaphiwat P, Harnkarnsujarit N (2018) Advances in research and development of bioplastic for food packaging. J Sci Food Agric 100(14):5032–5045. https://doi.org/10.1002/jsfa.9497
Jasberg BK, Swanson CL, Shogren RL, Doane WM (1992) Effect of moisture on injection molded starch-EAA-HDPE composites. J Polym Mater 571:163–170
Jenkins PJ (1995) AM Donald-influence of amylose on starch granule structure. Int J Biol Macromol 17:315–321
Jiang X, Ramsay JA, Ramsay BA (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J Microbiol Methods 67(2):212–219. https://doi.org/10.1016/j.mimet.2006.03.015
Jiang C, Li X, Ying Y, Ping J (2020) A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 74:104863. https://doi.org/10.1016/j.nanoen.2020.104863
Jinadasa K, Dissanayake CB (1992) The effect of selenium on fluoride—clay interactions: possible environmental health implications. Environ Geochem Health 14(1):3–7. https://doi.org/10.1007/BF01783619
Jong-Whan R, Seok-In H, Chang-Sik H (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. J Food Eng 4:395–409. https://doi.org/10.1016/j.lwt.2008.02.015
Jovančićević B, Antić M, Pavlović I, Vrvić M, Beškoski V, Kronimus A, Schwarzbauer J (2008) Transformation of petroleum saturated hydrocarbons during soil bioremediation experiments. Water Air Soil Pollut 190(1–4):299–307. https://doi.org/10.1007/s11270-007-9601-z
Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31(2):55–67. https://doi.org/10.1080/10408410590899228
Kalia V, Neena R, Sonakya V (2000a) Bioplastics. J Sci Ind Res 59:433–445
Kalia VC, Raizada N, Sonakya V (2000b) Bioplastics. J Sci Ind Res 59:433–445
Kampbell DH, Wiedemeier TH, Hansen JE (1996) Intrinsic bioremediation of fuel contamination in ground water at a field site. J Hazard Mater 49(2–3):197–204
Kao CM, Prosser J (2001) Evaluation of natural attenuation rate at a gasoline spill site. J Hazard Mater 82(3):275–289. https://doi.org/10.1016/S0304-3894(00)00361-7
Kao CM, Huang WY, Chang LJ, Chen TY, Chien HY, Hou F (2006) Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site. Water Sci Technol 53(2):321–328. https://doi.org/10.2166/wst.2006.066
Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enz Res 2011:11. https://doi.org/10.4061/2011/805187
Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agro Sustain Dev 32(2):501–529. https://doi.org/10.1007/s13593-012-0132-7
Kelly WJ, Muske KR (2004) Optimal operation of high-pressure homogenization for intracellular product recovery. Bioproc Biosyst Eng 27(1):25–37. https://doi.org/10.1007/s00449-004-0378-9
Kerry J, Butler P (2008) Smart packaging technologies for fast moving consumer goods. Wiley, Hoboken, NJ
Khosravi-Darani K, Vasheghani-Farahani E, Yamini Y, Bahramifar N (2003) Solubility of poly (β-hydroxybutyrate) in supercritical carbon dioxide. J Chem Eng Data 48(4):860–863. https://doi.org/10.1021/je020168v
Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97
Koenig MF, Huang SJ (1994) Evaluation of crosslinked poly(caprolactone) as a biodegradable, hydrophobic coating. Polym Degrad Stab 45(1):139–144
Koller I, Owen AJ (1996) Starch-filled PHB and PHB/HV copolymer. Polym Int 39(3):175–181
Koopmans RJ (2014) Polyolefin-based plastics from biomass-derived monomers. Bio-based plastics. Wiley Online Library
Koua D, Cerutti L, Falquet L, Sigrist CJA, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37(1):D261–D266. https://doi.org/10.1093/nar/gkn680
Kucharczyk P, Poljansek I, Sedlarik V, Kasparkova V, Salakova A, Drbohlav J, Cvelbar U, Saha P (2011) Functionalization of polylactic acid through direct melt polycondensation in the presence of tricarboxylic acid. J Appl Polym Sci 122(2):1275–1285. https://doi.org/10.1002/app.34260
Kumar V, Saxena G (2020) Microbe-assisted phytoremediation of environmental pollutants: recent advances and challenges. CRC, Boca Raton, FL
Kumar S, Thakur KS (2017) Bioplastics-classification, production and their potential food applications. J Hill Agric 8(2):118–129. https://doi.org/10.5958/2230-7338.2017.00024.6
Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Polym Lett 5(7):620–634. https://doi.org/10.3144/expresspolymlett.2011.60
Kunasundari B, Arza CR, Maurer FHJ, Murugaiyah V, Kaur G, Sudesh K (2017) Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol 172:1–6. https://doi.org/10.1016/j.seppur.2016.07.043
Lafferty RM, Heinzle E (1978) Cyclic carbonic acid esters as solvents for poly-β-hydroxybutyric acid. Switzerland Patent
Lee MD, Swindoll CM (1993) Bioventing for in situ remediation. Hydrol Sci J 38(4):273–282
Lee G-H, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK (2020) Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 5:149–165. https://doi.org/10.1038/s41578-019-0167-3
Lehninger AL, Nelson DL, Cox MM (2004) Overhead transparency set for Lehninger principles of biochemistry, 4th edn. WH Freeman, New York
Lei T, Guan M, Liu J, Lin H-C, Pfattner R, Shaw L, McGuire AF, Huang T-C, Shao L, Cheng K-T (2017) Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc Natl Acad Sci 114(20):5107–5112. https://doi.org/10.1073/pnas.1701478114
Lemos PC, Levantesi C, Serafim LS, Rossetti S, Reis MAM, Tandoi V (2008) Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Appl Microbiol Biotechnol 78(2):351–360. https://doi.org/10.1007/s00253-007-1301-5
Leung M (2004) Bioremediation: techniques for cleaning up a mess. BioTeach J 2:18–22
Lim ST, Jane JL, Rajagopalan S, Seib PA (1992) Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnol Prog 8(1):51–57
Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368
Liu H, Xu Y, Zheng Z, Liu D (2010) 1, 3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5(11):1137–1148. https://doi.org/10.1002/biot.201000140
Loos R, Yang X, Auffermann J, Freese F (2015) Biodegradable polyester foil. USA Patent. Accessed 4 Aug 2015
Lopes MS, Jardini A, Maciel Filho R (2014) Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. Chem Eng Trans 38:331–336
López NI, Pettinari MJ, Nikel PI, Méndez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol 93:73–106. https://doi.org/10.1016/bs.aambs.2015.06.001
Lopez-Rubio A, Almenar E, Hernandez-Muñoz P, Lagarón JM, Catalá R, Gavara R (2004) Overview of active polymer-based packaging technologies for food applications. Food Rev Int 20(4):357–387. https://doi.org/10.1081/FRI-200033462
Lörcks J (1998) Properties and applications of compostable starch-based plastic material. Polym Degrad Stab 59(1–3):245–249. https://doi.org/10.1016/S0141-3910(97)00168-7
Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K (2016) Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10(4):4472–4481. https://doi.org/10.1021/acsnano.6b00168
MacDonald TR, Kitanidis PK, McCarty PL, Roberts PV (1999) Effects of shear detachment on biomass growth and in situ bioremediation. Ground Water 37(4):555
Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53. https://doi.org/10.1128/MMBR.63.1.21-53.1999
Maharana T, Mohanty B, Negi YS (2009) Melt–solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34(1):99–124. https://doi.org/10.1016/j.progpolymsci.2008.10.001
Maheshwari R, Rani B, Sangeeta P, Sharma A (2013) Eco-friendly bioplastic for uncontaminated environment. Res J Chem Environ Sci 1(1):44–49
Malinconico M (2017) Soil degradable bioplastics for a sustainable modern agriculture. Springer, Berlin. https://doi.org/10.1007/978-3-662-54,130-2
Mandle SA (2019) Agro textile—a new innovation for crop management. Int J Adv Innovat Res 6(1):345
Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity—a useful indicator of oil biodegradation. Biotech Tech 13(12):859–863. https://doi.org/10.1023/A:1008928308695
Marjadi D, Dharaiya N, Ngo AD (2010) Bioplastic: a better alternative for sustainable future. Everyman’s Sci 15(2):90–92
Marvizadeh MM, Oladzadabbasabadi N, Nafchi AM, Jokar M (2017) Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. Int J Biol Macromol 99:1–7. https://doi.org/10.1016/j.ijbiomac.2017.02.067
Masutani K, Kimura Y (2014) PLA synthesis. From the monomer to the polymer. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, London. https://doi.org/10.1039/9781782624806-00001
Maya-Vetencourt JF, Ghezzi D, Antognazza MR, Colombo E, Mete M, Feyen P, Desii A, Buschiazzo A, Di Paolo M, Di Marco S (2017) A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat Mater 16(6):681–689. https://doi.org/10.1038/nmat4874
McCool GJ, Fernandez T, Li N, Cannon MC (1996) Polyhydroxyalkanoate inclusion-body growth and proliferation in Bacillus megaterium. FEMS Microbiol Lett 138(1):41–48
McGuire JT, Long DT, Hyndman DW (2005) Analysis of recharge-induced geochemical change in a contaminated aquifer. Ground Water 43(4):518–530. https://doi.org/10.1111/j.1745-6584.2005.0040.x
McKeen L, Massey LK (2017) Film properties of plastics and elastomers, second edn. William Andrew, USA
Metz B, Davidson O, Bosch P, Dave R, Meyer L (2007) Climate change 2007: mitigation of climate change. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge
Michael DL, Swindoll CM (1995) Bioventing for in situ remediation. In: Hinchee RE, Miller RN, Johnson PC (eds) In situ aeration: air sparging, bioventing, and related remediation processes. Battelle Press, Columbus, pp 273–282
Middelberg APJ (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13(3):491–551
Modi SJ (2010) Assessing the feasibility of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(lactic acid) for potential food packaging applications. PhD Thesis, The Ohio State University, USA
Mohamed A, Jamilah B, Abbas KA, Abdul Rahman R, Roselina K (2008) A review on physicochemical and thermorheological properties of sago starch. Am J Agric Biol Sci 3(4):639–646
Mohan SV, Reddy MV (2013) Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology. Bioresour Technol 128:409–416. https://doi.org/10.1016/j.biortech.2012.10.037
Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26. https://doi.org/10.1023/A:1021013921916
Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray D (2017) Bacillus and biopolymer: prospects and challenges. Biochem Biophysics Reports 12:206–213. https://doi.org/10.1016/j.bbrep.2017.10.001
Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymers 42(11):5059–5062. https://doi.org/10.1016/S0032-3861(00)00889-2
Morschbacker A (2009) Bio-ethanol based ethylene. J Macromol Sci Polym Rev 49(2):79–84. https://doi.org/10.1080/15583720902834791
Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T (2020) Production and characterization of bioplastic by polyhydroxybutyrate accumulating Erythrobacter aquimaris isolated from mangrove rhizosphere. Molecules 25(1):179. https://doi.org/10.3390/molecules25010179
Możejko J, Ciesielski S (2013) Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis. J Biosci Bioeng 116(4):485–492. https://doi.org/10.1016/j.jbiosc.2013.04.014
Mueller JG, Lantz SE, Blattmann BO, Chapman PJ (1991) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials. Solid-phase bioremediation. Environ Sci Technol 25(6):1045–1055. https://doi.org/10.1021/es00018a005
Mukherjee S, Chatterjee S (2014) A comparative study of commercially available plastic carry bag biodegradation by microorganisms isolated from hydrocarbon effluent enriched soil. Int J Curr Microbiol Appl Sci 3(5):318–325
Murugan P, Gan C-Y, Sudesh K (2017) Biosynthesis of P (3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Int J Biol Macromol 102:1112–1119. https://doi.org/10.1016/j.ijbiomac.2017.05.006
Musiol M, Sikorska W, Kowalczuk M, Adamus G (2016) The development of sustainable bioplastics for new applications in packaging industry. Int J Environ Agric Res 2(2):117–124
Muthuraj R (2015) Biodegradable polymer blends and their biocomposites: compatibilization and performance evaluation. PhD Thesis, The University of Guelph, Guelph, Ontario, Canada
Nano G, Borroni A, Rota R (2003) Combined slurry and solid-phase bioremediation of diesel contaminated soils. J Hazard Mater 100(1–3):79–94. https://doi.org/10.1016/S0304-3894(03)00065-7
National Research C (1994) Polymer science and engineering: the shifting research frontiers. National Academies Press, New York
Neveu JL, Gregoire P (1991) Composite agrotextile and its applications. USA Patent
Nikel PI, De Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly (3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72(6):3949–3954. https://doi.org/10.1128/AEM.00044-06
Niranjana Prabhu T, Prashantha K (2018) A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polym Compos 39(7):2499–2522. https://doi.org/10.1002/pc.24236
Noda I, Satkowski MM (2005) Agricultural items and agricultural methods comprising biodegradable copolymers. United States Patent
Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotech 3(1):18–24. https://doi.org/10.5897/AJB2004.000-2004
Ong SY, Kho H-P, Riedel SL, Kim S-W, Gan C-Y, Taylor TD, Sudesh K (2018a) An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. J Biotechnol 265:31–39. https://doi.org/10.1016/j.jbiotec.2017.10.017
Ong SY, Zainab-L I, Pyary S, Sudesh K (2018b) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102(5):2117–2127. https://doi.org/10.1007/s00253-018-8788-9
Page WJ, Cornish A (1993) Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Environ Microbiol 59(12):4236–4244
Pang J, Fan C, Liu X, Chen T, Li G (2003) A nitric oxide biosensor based on the multi-assembly of hemoglobin/montmorillonite/polyvinyl alcohol at a pyrolytic graphite electrode. Biosens Bioelectron 19(5):441–445. https://doi.org/10.1016/S0956-5663(03)00223-9
Panigrahi AK, Konar SK (1992) Influence of petroleum refinery effluent in presence of nonionic detergent sandozin NIS on fish. Environ Ecol 10(1):55–59
Pathak S, Sneha CLR, Mathew BB (2014) Bioplastics: its timeline based scenario & challenges. J Polym Biopolym Phys Chem 2(4):84–90. https://doi.org/10.12691/jpbpc-2-4-5
Patnaik PR (2005) Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol 25(3):153–171. https://doi.org/10.1080/07388550500301438
Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114. https://doi.org/10.1016/j.coldregions.2007.07.006
Pavia DL, Lampman GM, Kriz GS (1988) Introduction to organic laboratory techniques: a contemporary approach. Harcourt, Brace College Publishers, The Ohio State University, USA
Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110(suppl 6):943–946. https://doi.org/10.1289/ehp.02110 s6943
Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10(2):52–68. https://doi.org/10.1016/S0924-2244(99)00019-9
Piemonte V (2011) Bioplastic wastes: the best final disposition for energy saving. J Polym Environ 19(4):988–994. https://doi.org/10.1007/s10924-011-0343-z
Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications, vol 81. Wiley, Hoboken, NJ
Płaza G, Nałęcz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59(2):289–296. https://doi.org/10.1016/j.chemosphere.2004.11.049
Ploetz R, Rusdianasari R, Eviliana E (2016) Renewable energy: advantages and disadvantages. In: Proceeding forum in research, science, and technology (first) 2016, Palembang, Indonesia. Politeknik Negeri Sriwijaya
Poland JS, Page JA, Paudyn K, Rutter A, Rowe RK (2008) Remediation of hydrocarbon contaminated soils in the. Can Arctic Landf 53(1):209–215
Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M (2013) Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization. Chem Soc Rev 42(23):9035–9054
Potera C (1997) Genencor & DuPont create “green” polyester. Genet Eng News 17(11):17–17
Potter CL (1996) Bioremediation of hazardous waste sites: practical approaches to implementation. In: Biopile treatment of soils contaminated with hazardous waste. Office of Res. and Dev., US Environ. Protection Agency, Washington, DC, pp 624–627
Primer SA (2001) The application of biotechnology to industrial sustainability—a primer. OECD, Paris
Prodanović S, Milutinović M (2017) Some applications of biomaterials in automotive industry. In: Pellicer E, Nikolic D, Sort J et al (eds) Advances in applications of industrial biomaterials. Springer International, Cham, pp 1–20. https://doi.org/10.1007/978-3-319-62,767-0_1
Qian D-J, Nakamura C, Wenk S-O, Ishikawa H, Zorin N, Miyake J (2002) A hydrogen biosensor made of clay, poly (butylviologen), and hydrogenase sandwiched on a glass carbon electrode. Biosens Bioelectron 17(9):789–796. https://doi.org/10.1016/S0956-5663(02)00079-9
Rader CP, Stockel RF (1995) Polymer recycling: an overview. ACS Publications, Washington, DC
Rahman R, Sood M, Gupta N, Bandral JD, Hameed F, Ashraf S (2019) Bioplastics for food packaging: a review. Int J Curr Microbiol Appl Sci 8(3):2311–2321. https://doi.org/10.20546/ijcmas.2019.803.274
Ramsay JA, Berger E, Ramsay BA, Chavarie C (1990) Recovery of poly-3-hydroxyalkanoic acid granules by a surfactant-hypochlorite treatment. Biotechnol Techn 4(4):221–226. https://doi.org/10.1007/BF00158833
Rand D, Jakešová M, Lubin G, Vėbraitė I, David-Pur M, Đerek V, Cramer T, Sariciftci NS, Hanein Y, Głowacki ED (2018) Neurostimulation: direct electrical neurostimulation with organic pigment photocapacitors. Adv Mater 30(25):1870184. https://doi.org/10.1002/adma.201707292
Rechnia P, Malaika A, Krzyżyńska B, Kozłowski M (2012) Decomposition of methane in the presence of ethanol over activated carbon catalyst. Int J Hydrogen Energy 37(19):14178–14,186. https://doi.org/10.1016/j.ijhydene.2012.07.060
Reddy RL, Reddy VS, Gupta GA (2013) Study of bio-plastics as green and sustainable alternative to plastics. Engineering 3(5):76–81
Redfern LK, Gunsch CK (2016) Endophytic phytoaugmentation: treating wastewater and runoff through augmented phytoremediation. Indus Biotechnol 12(2):83–90. https://doi.org/10.1089/ind.2015.0016
Reinhart DR, Townsend TG (1997) Landfill bioreactor design & operation. Taylor & Francis, CRC, Boca Raton, FL
Reinhart DR, McCreanor PT, Townsend T (2002) The bioreactor landfill: its status and future. Waste Manag Res 20(2):172–186. https://doi.org/10.1177/0734242X0202000209
Restrepo-Osorio A, Álvarez-López C, Jaramillo-Quiceno N, Fernández-Morales P (2019) Agrotextiles and crop protection textiles. In: Paul R (ed) High performance technical textiles. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781119325062.ch10
Rezende MI, Barbosa AM, Vasconcelos AFD, Haddad R, Dekker RFH (2005) Growth and production of laccases by the ligninolytic fungi, Pleurotus ostreatus and Botryosphaeria rhodina, cultured on basal medium containing the herbicide, Scepter® (imazaquin). J Basic Microbiol 45(6):460–469. https://doi.org/10.1002/jobm.200410552
Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci Tech 42(2):612–617. https://doi.org/10.1016/j.lwt.2008.02.015
Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A (2006) Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut 170(1–4):3–15
Riisom T, Krog N, Eriksen J (1984) Amylose complexing capacities of cis- and trans-unsaturated monoglycerides in relation to their functionality in bread. J Cereal Sci 2(2):105–118. https://doi.org/10.1016/S0733-5210(84)80023-5
Rixon JE, Ferreira LMA, Durrant AJ, Laurie JI, Hazlewood GP, Gilbert HJ (1992) Characterization of the gene celD and its encoded product 1,4-β-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa. Biochem J 285(3):947–955
Rusu D, Boyer SAE, Lacrampe M-F, Krawczak P (2011) Bioplastics and vegetal fiber reinforced bioplastics for automotive applications. In: Handbook of bioplastics and biocomposites engineering applications. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118203699
Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596. https://doi.org/10.3390/ijms16010564
Sabbah M, Porta R (2017) Plastic pollution and the challenge of bioplastics. J Appl Biotechnol Bioeng 2(3):111. https://doi.org/10.15406/jabb.2017.02.00033
Saharan BS, Ankita SD (2012) Bioplastics-for sustainable development: a review. Int J Microbial Res Technol 1:11–23
Saharan BS, Badoni P, Narula N (2007) Isolation and characterization of Azotobacter species from soils. Ann Biol 23(2):109
Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genetic Eng Biotechnol J 2011(1):1–14
Scarlat R, Rusu L, Pricop F (2017) Knitted agrotextiles for a sustainable agriculture. Indus Textila 68(5):332–336. https://doi.org/10.35530/it.068.05.1413
Schinner F, Margesin R (2005) Manual for soil analysis: monitoring and assessing soil bioremediation. Springer, Berlin
Schreiber ME, Bahr JM (2002) Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments. J Contam Hydrol 55(1–2):29–56. https://doi.org/10.1016/S0169-7722(01)00184-X
Schut JH (2003) NPE highlights compounding’s growth niches. Plastics Technol 49(7):54–57
Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81(4):615–628. https://doi.org/10.1007/s00253-008-1757-y
Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005
Shamsuddin IM, Jafar JA, Shawai ASA, Yusuf S, Lateefah M, Aminu I (2017) Bioplastics as better alternative to petroplastics and their role in national sustainability: a review. Adv Biosci Bioeng 5(4):63–70. https://doi.org/10.11648/j.abb.20170504.13
Shi R, Zhang Z, Liu Q, Han Y, Zhang L, Chen D, Tian W (2007) Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohydr Polym 69(4):748–755. https://doi.org/10.1016/j.carbpol.2007.02.010
Shikamoto N, Ohtani A, Leong YW, Nakai A (2009) Fabrication and mechanical properties of jute spun yarn/pla unidirection composite by compression molding. Energy Procedia 35(2):49–55. https://doi.org/10.1016/j.egypro.2013.06.819
Sim SJ, Snell KD, Kim BW, Rha CK, Sinskey AJ (2001) Increased poly-β-hydroxybutyrate (PHB) chain length by the modulation of PHA synthase activity in recombinant Escherichia coli. Biotechnol Lett 23(24):2057–2061. https://doi.org/10.1023/A:1013752000022
Singh AP, Devi AS (2019) Bio-Plastics: a sustainable alternative to conventional petroleum based plastics. Int J Adv Sci Res Manag 4(4)
Singh Saharan B, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:802984. https://doi.org/10.1155/2014/802984
Sintim HY, Flury M (2017) Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ Sci Technol 51(3):1068. https://doi.org/10.1021/acs.est.6b06042
Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003
Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32(21):3386–3395. https://doi.org/10.1021/es9805019
Smith A, Brown K, Ogilvie S, Rushton K, Bates J (2001) Waste management options and climate change. Final Report ED21158R4, vol 1
So K (2012) Automotive giants turn to bioplastics. Eur Plast News 39:31–32
Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71(6):783–789. https://doi.org/10.1007/s00253-006-0451-1
Song F, Wu L (2011) Synthesis of high molecular weight poly(L-lactic acid) via melt/solid polycondensation: intensification of dehydration and oligomerization during melt polycondensation. J Appl Polym Sci 120(5):2780–2785. https://doi.org/10.1002/app.33182
Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95. https://doi.org/10.1016/j.tifs.2006.09.004
Šprajcar M, Horvat P, Kržan A (2012) Biopolymers and bioplastics: plastics aligned with nature. National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
Starr JN, Westhoff G (2000) Lactic acid. Ullmann’s Encycl Ind Chem:1–8. https://doi.org/10.1002/14356007.a15_097.pub2
Stevens CV (2013) Bio-based plastics: materials and applications. Wiley, Hoboken, NJ
Strong PJ, Burgess JE (2008) Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters. Bioresour Technol 99(14):6134–6142. https://doi.org/10.1016/j.biortech.2007.12.041
Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. CLEAN Soil Air Water 36(5–6):433–442. https://doi.org/10.1002/clen.200700183
Sung Y-C, Jin P-R, Chu L-A, Hsu F-F, Wang M-R, Chang C-C, Chiou S-J, Qiu JT, Gao D-Y, Lin C-C (2019) Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol 14(12):1160–1169. https://doi.org/10.1038/s41565-019-0570-3
Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Van Thuoc D, Sudesh K (2020) Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Front Bioeng Biotechnol 8:169. https://doi.org/10.3389/fbioe.2020.00169
Swanson CL, Shogren RL, Fanta GF, Imam SH (1993) Starch-plastic materials—Preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Degrad 1(2):155–166
Tamer IM, Moo-Young M, Chisti Y (1998) Disruption of Alcaligenes latus for recovery of poly(β-hydroxybutyric acid): comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Ind Eng Chem Res 37(5):1807–1814. https://doi.org/10.1021/ie9707432
Tamis J, Lužkov K, Jiang Y, van Loosdrecht MCM, Kleerebezem R (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192(A):161–169. https://doi.org/10.1016/j.jbiotec.2014.10.022
Tang CY, Fu QS, Criddle CS, Leckie JO (2007) Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Tech 41(6):2008–2014. https://doi.org/10.1021/es062052f
Thakur M, Majid I, Nanda V (2020) Advances in edible coating for improving the shelf life of fruits. In: Dar BN, Mir SA (eds) Emerging technologies for shelf-life enhancement of fruits, 1st edn. Apple Academic Press, New York, p 33. https://doi.org/10.1201/9780429264481
Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787. https://doi.org/10.1007/s10853-007-1994-y
Tomei MC, Daugulis AJ (2013) Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Rev Environ Sci Technol 43(20):2107–2139. https://doi.org/10.1080/10643389.2012.672056
Tomka I (1991) Thermoplastic starch. In: Levine H, Slade L (eds) Water relationships in foods. Advances in experimental medicine and biology, vol 302. Springer, New York, pp 627–637. https://doi.org/10.1007/978-1-4899-0664-9
Trapani K (2014) Flexible floating thin film photovoltaic (pv) array concept for marine and lacustrine environments. PhD Thesis, Laurentian University Sudbury, Ontario, Canada
Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 94(6):579–584. https://doi.org/10.1016/S1389-1723(02)80198-0
Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99(15):6231–6240. https://doi.org/10.1007/s00253-015-6777-9
Tweib SA, Rahman R, Kalil MS (2011) A literature review on the composting. In: Paper presented at the International Conference on Environment and Industrial Innovation IPCBEE, Singapore
United States Department of D (1997) Technology practices manual for surfactants and cosolvents [electronic resource]
United States Environmental Protection Agency. Office of Solid W, Emergency R, Environmental Management S (1997) Cleaning up the Nation’s waste sites: markets and technology trends. US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC
Van Soest JJG, Knooren N (1997) Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J Appl Polym Sci 64(7):1411–1422
Van Soest JJG, Hulleman SHD, De Wit D, Vliegenthart JFG (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5(1):11–22
Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54(6):2285–2289. https://doi.org/10.1099/ijs.0.63247-0
Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x
Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Pt A Pure Appl Chem 32(4):787–796
Vidali M (2001) Bioremediation. an overview. Pure Appl Chem 73(7):1163–1172. https://doi.org/10.1351/pac200173071163
Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419. https://doi.org/10.1016/S0141-3910(02)00372-5
Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7(3):311–316
Volova TG (2004a) Microbial polyhydroxyalkanoates-plastic materials of the twenty-first century: biosynthesis, properties, applications. Nova Science, Hauppauge, NY
Volova TG (2004b) Polyhydroxyalkanoates—plastic materials of the twenty-first century: production, properties, applications. Nova, New York
Wang KH, Wu TM, Shih YF, Huang CM (2008) Water bamboo husk reinforced poly (lactic acid) green composites. Polym Eng Sci 48(9):1833–1839. https://doi.org/10.1002/pen.21151
Ward AM, Wyllie GRA (2019) Bioplastics in the general chemistry laboratory: building a semester-long research experience. J Chem Educ 96(4):668–676. https://doi.org/10.1021/acs.jchemed.8b00666
Waudby JG, Nelson YM (2004) Biological feasibility and optimization of biosparging at a hydrocarbon-contaminated site. In: Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA. Battelle Press, Columbus, OH
Weber CJ (2000) Biobased packaging materials for the food industry: status and perspectives, a European concerted action. The Royal Veterinary and Agricultural University, Rolighedsvej Frederiksberg C, Denmark
Willett JL, Jasberg BK, Swanson CL (1994) Melt rheology of thermoplastic starch. ACS Publications, Washington, DC
Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10(3):279–285. https://doi.org/10.1016/S0958-1669(99)80049-4
Woodford C (2008) Explain that stuff. https://www.explainthatstuff.com/diesel-engines.html. Accessed 20 Oct 2020
Wool RP, Sun XS (2005) Bio-based polymers and composites, 1st edn. Elsevier Academic Press, Munich
Yamane T (1992) Cultivation engineering of microbial bioplastics production. FEMS Microbiol Rev 9(2–4):257–264
Yu J, Chen LXL (2006) Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnol Prog 22(2):547–553. https://doi.org/10.1007/s00253-006-0451-1
Yu J, Chen LXL (2008) The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery. Environ Sci Tech 42(18):6961–6966. https://doi.org/10.1021/es7032235
Zeng A-P, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757. https://doi.org/10.1016/j.copbio.2011.05.005
Zepnik S (2010) Basics of cellulosics. Bioplastic Mag 5:44–47
Zeyaullah MD, Atif M, Islam B, Abdelkafe AS, Sultan P, ElSaady MA, Ali A (2009) Bioremediation: a tool for environmental cleaning. Afr J Microbiol Res 3(6):310–314. https://doi.org/10.5897/AJMR.9000136
Zhao YQ, Lau KT, Liu T, Cheng S, Lam PM, Li HL (2008) Production of a green composite: mixture of poly(lactic acid) and keratin fibers from chicken feathers. Adv Mat Res 47–50:1225–1228. https://doi.org/10.4028/AMR.47-50.1225
Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21. https://doi.org/10.1016/S0169-409X(01)00218-6
Zuraida A, Yusliza Y, Anuar H, Muhaimin RMK (2012) The effect of water and citric acid on sago starch bio-plastics. Int Food Res J 19(2):715
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Ahmad, S., Abbas, S., Khalid, N., Ali, A., Ahmed, I. (2021). Application of Bioplastics in Agro-Based Industries and Bioremediation. In: Kuddus, M., Roohi (eds) Bioplastics for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-1823-9_22
Download citation
DOI: https://doi.org/10.1007/978-981-16-1823-9_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1822-2
Online ISBN: 978-981-16-1823-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)