Skip to main content

The New Butterfly Relaxation Method for Mathematical Programs with Complementarity Constraints

  • Conference paper
  • First Online:
Optimization, Variational Analysis and Applications (IFSOVAA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 355))

Abstract

We propose a new family of relaxation schemes for mathematical programs with complementarity constraints. We discuss the properties of the sequence of relaxed non-linear programs as well as stationary properties of limiting points. A sub-family of our relaxation schemes has the desired property of converging to an M-stationary point. A stronger convergence result is also proved in the affine case. A comprehensive numerical comparison between existing relaxation methods is performed on the library of test problems MacMPEC which shows promising results for our new method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Definitions of stationary points of a non-linear program at the beginning of Sect. 3.2.1.

  2. 2.

    Definitions of M- and S-stationarity points are given in Definition 3.3.

  3. 3.

    \(\lim \limits _{k \rightarrow \infty } A^k = A\) pointwise means that for all sequences \(\{ x^k \}\) with \(x^k \in A^k\) for all k implies \(\lim \limits _{k \rightarrow \infty } x^k \in A\) and for any \(x^* \in A\) there exists a sequence \(x^k\) with \(x^k \in A^k\) such that \(\lim \limits _{k \rightarrow \infty } x^k = x^*\).

  4. 4.

    For indices \(i \in \mathcal {I}_{GH}^{0+}(x^k;t_k)\) (symmetry for indices \(i \in \mathcal {I}_{GH}^{+0}(x^k;t_k)\)), then \(\lambda ^{G,k}_i=\eta ^{\Phi ,k}_i {t_{2,k}}\theta '_{{t_{1,k}}}(G_i(x^k)){F_{2i}(x^k;t_k)}\) and \(\lambda ^{H,k}_i=\eta ^{\Phi ,k}_i{F_{2i}(x^k;t_k)}\). Therefore, considering that \(t_k \theta '_{{t_{1,k}}}(G_i(x^k)) <1\), we get \(\lambda ^{G,k}_i < \lambda ^{H,k}_i\). All in all the infinite norm is not obtained at these components.

  5. 5.

    \((I,I^c,I^-)\) is a partition of \(\mathcal {I}_{GH}^{00}(z;t)\) means that \(I\cup I^c\cup I^- = \mathcal {I}_{GH}^{00}(z;t)\) and \(I\cap I^c=I \cap I^- = I^c \cap I^-=\emptyset \).

  6. 6.

    We remind that \({F_{1i}(x^k;t_k)}=H_i(x)-{t_{2,k}}\theta _{{t_{1,k}}}(G_i(x)) \text{ and } {F_{2i}(x^k;t_k)}=G_i(x)-{t_{2,k}}\theta _{{t_{1,k}}}(H_i(x))\). Thus, \(\lim _{k \rightarrow \infty } ({F_{2i}(x^k;t_k)},{F_{1i}(x^k;t_k)}) = (G_i(x^*),0)\) and \(G_i(x^*)>0\).

References

  1. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327, 196–207 (2018)

    Article  MathSciNet  Google Scholar 

  2. Abdallah, L., Haddou, M., Migot, T.: A sub-additive DC approach to the complementarity problem. Comput. Optim. Appl. 73(2), 509–534 (2019)

    Google Scholar 

  3. Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019)

    Article  MathSciNet  Google Scholar 

  4. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization, vol. 122. Springer Science & Business Media (2012)

    Google Scholar 

  6. DeMiguel, V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(2), 587–609 (2005)

    Article  MathSciNet  Google Scholar 

  7. Dussault, J.-P., Haddou, M., Kadrani, A., Migot, T.: On approximate stationary points of the regularized mathematical program with complementarity constraints. J. Optim. Theory Appl. 186(2), 504–522 (2020)

    Google Scholar 

  8. Dussault, J.-P., Haddou, M., Migot, T.: Mathematical programs with vanishing constraints: constraint qualifications, their applications, and a new regularization method. Optimization 68(2–3), 509–538 (2019)

    Article  MathSciNet  Google Scholar 

  9. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005)

    Article  MathSciNet  Google Scholar 

  10. Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005)

    Google Scholar 

  11. Flegel, M.L., Kanzow, C.: A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. Springer (2006)

    Google Scholar 

  12. Fletcher, R., Leyffer, S.: Solving mathematical programs with complementarity constraints as nonlinear programs. Optim. Methods Softw. 19(1), 15–40 (2004)

    Article  MathSciNet  Google Scholar 

  13. Fourer, R., Gay, D., Kernighan, B.: Ampl, vol. 119. Boyd & Fraser (1993)

    Google Scholar 

  14. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  Google Scholar 

  15. Guo, L., Lin, G.-H., Ye, J.J.: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166(1), 234–256 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kadrani, A., Dussault, J.-P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 20(1), 78–103 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: enhanced fritz john-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Optim. 20(5), 2730–2753 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Optim. 23(2), 770–798 (2013)

    Google Scholar 

  20. Kanzow, C., Schwartz, A.: Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints. Comput. Optim. Appl. 59(1–2), 249–262 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2015)

    Google Scholar 

  22. Leyffer, S.: Macmpec: Ampl collection of mpecs. Argonne National Laboratory. www.mcs.anl.gov/leyfier/MacMPEC (2000)

  23. Lin, G.-H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133(1–4), 63–84 (2005)

    Article  MathSciNet  Google Scholar 

  24. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical programs with equilibrium constraints. Cambridge University Press (1996)

    Google Scholar 

  25. Murtagh, B.A., Saunders, M.A.: Minos 5.0 user’s guide. Technical report, DTIC Document (1983)

    Google Scholar 

  26. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24(3), 627–644 (1999)

    Article  MathSciNet  Google Scholar 

  27. Outrata, J.V.: A generalized mathematical program with equilibrium constraints. SIAM J. Control Optim. 38(5), 1623–1638 (2000)

    Article  MathSciNet  Google Scholar 

  28. Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified b-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13(1), 111–136 (1999)

    Article  MathSciNet  Google Scholar 

  29. Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Optim. Meth. Softw. 36(1), 45–81 (2021)

    Google Scholar 

  30. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  31. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Article  MathSciNet  Google Scholar 

  32. Schwartz, A.: Mathematical programs with complementarity constraints: theory, methods, and applications. PhD thesis, Ph. D. dissertation, Institute of Applied Mathematics and Statistics, University of Würzburg (2011)

    Google Scholar 

  33. Steffensen, S., Ulbrich, M.: A new relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 20(5), 2504–2539 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  35. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10(4), 943–962 (2000)

    Article  MathSciNet  Google Scholar 

  36. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005)

    Article  MathSciNet  Google Scholar 

  37. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)

    Article  MathSciNet  Google Scholar 

  38. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the NSERC grantand partially by a french grant from “l’Ecole des Docteurs de l’UBL” and “le Conseil Régional de Bretagne”. The authors would like to thank the referees for their help and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haddou .

Editor information

Editors and Affiliations

Appendices

Appendix

3.7 Proof of a Technical Lemma

In the proof of Theorem 3.4.4 and Theorem 3.4.5, we use the following lemma that links the gradients of G and H with the gradients of \({F_{1}(x;t)}\) and \({F_{2}(x;t)}\).

Lemma 3.7.6

Let \((I,I^c,I^-)\) be any partition of \(\mathcal {I}_{GH}^{00}(x;t)\). Assume that the gradients

$$\begin{aligned} \begin{aligned}&\{ \nabla g_i(x) \ (i \in \mathcal {I}_g(x)), \ \nabla h_i(x) \ (i=1,\dots ,p), \\ {}&\nabla G_i(x) \ (i \in \mathcal {I}_G(x;\bar{t}) \cup \mathcal {I}_{GH}^{00}(x;t) \cup \mathcal {I}_{GH}^{+0}(x;t)), \\&\nabla H_i(x) \ (i \in \mathcal {I}_H(x;\bar{t}) \cup \mathcal {I}_{GH}^{00}(x;t)\cup \mathcal {I}_{GH}^{0+}(x;t)) \} \end{aligned} \end{aligned}$$

are linearly independent. Then, LICQ holds at x for (3.13).

Proof

We show that the gradients of the constraints of (3.13) are positively linearly independent. For this purpose, we prove that the trivial solution is the only solution to the equation

$$\begin{aligned} \begin{aligned} 0=&\sum _{i \in \mathcal {I}_g(x)} \eta ^g_i \nabla g_i(x) + \sum _{i=1}^{p} \eta ^h_i \nabla h_i(x)-\sum _{i \in \mathcal {I}_G(x;\bar{t})} \eta ^G_i \nabla G_i(x) - \sum _{i \in \mathcal {I}_H(x;\bar{t})} \eta ^H_i \nabla H_i(x) \\&+ \sum _{i \in \mathcal {I}_{GH}^{+0}(x;t) \cup \mathcal {I}_{GH}^{0+}(x;t)} \eta ^\Phi _i \nabla {\Phi ^B_i(G(x),H(x);t)}\\&+\sum _{i \in \mathcal {I}_{GH}^{00}(x;t)} \left( \nu ^{{F_{1}(x;t)}}_i-\mu ^{{F_{1}(x;t)}}_i+\delta ^{{F_{1}(x;t)}}_i\right) \nabla {F_{1i}(x;t)}\\&+ \left( -\nu ^{{F_{2}(x;t)}}_i+\mu ^{{F_{2}(x;t)}}_i+\delta ^{{F_{2}(x;t)}}_i\right) \nabla {F_{2i}(x;t)},\\ \end{aligned} \end{aligned}$$

where \(\mathop {\mathrm {supp}}(\eta ^g)\subseteq \mathcal {I}_g(x)\), \(\mathop {\mathrm {supp}}(\eta ^G)\subseteq \mathcal {I}_G(x;\bar{t})\), \(\mathop {\mathrm {supp}}(\eta ^H)\subseteq \mathcal {I}_H(x;\bar{t})\), \(\mathop {\mathrm {supp}}(\eta ^\Phi )\subseteq \mathcal {I}_{GH}^{+0}(x;t) \cup \mathcal {I}_{GH}^{0+}(x;t)\), \(\mathop {\mathrm {supp}}(\nu ^{{F_{1}(x;t)}})\subseteq I\), \(\mathop {\mathrm {supp}}(\nu ^{{F_{2}(x;t)}})\subseteq I\), \(\mathop {\mathrm {supp}}(\mu ^{{F_{1}(x;t)}})\subseteq I^c\), \(\mathop {\mathrm {supp}}(\mu ^{{F_{2}(x;t)}})\subseteq I^c\), \(\mathop {\mathrm {supp}}(\delta ^{{F_{1}(x;t)}})\subseteq I^-\), and \(\mathop {\mathrm {supp}}(\delta ^{{F_{2}(x;t)}})\subseteq I^-\) where \(I \cup I^c \cup I^-=\mathcal {I}_{GH}^{00}(x;t)\) and \(I,I^c,I^-\) have a two-by-two empty intersection.

By definition of \({F_{1}(x;t)}\) and \({F_{2}(x;t)}\), it holds that

$$\begin{aligned} \begin{aligned}&\nabla {F_{1i}(x;t)}=\nabla H_i(x) - {t_2}\theta '_{t_1}(G_i(x)) \nabla G_i(x), \\&\nabla {F_{2i}(x;t)}=\nabla G_i(x) - {t_2}\theta '_{t_1}(H_i(x)) \nabla H_i(x). \end{aligned} \end{aligned}$$

The gradient of \({\Phi ^B(G(x),H(x);t)}\) is given by Lemma 3.3.3.

We now replace those gradients in the equation above

$$\begin{aligned} \begin{aligned} 0= \sum _{i \in \mathcal {I}_g(x)} \lambda ^g_i \nabla g_i(x) + \sum _{i=1}^{p} \lambda ^h_i \nabla h_i(x)+\sum _{i=1}^{q} \lambda ^G_i \nabla G_i(x)+\sum _{i=1}^{q} \lambda ^H_i \nabla H_i(x), \end{aligned} \end{aligned}$$

with

$$\begin{aligned} \begin{aligned}&\lambda ^G_i=-\eta ^G_i + \eta ^\Phi _i{F_{1i}(x;t)}-\left( \eta ^\Phi _i{F_{2i}(x;t)}\!+\!\nu ^{{F_{1}(x;t)}}_i\!-\!\mu ^{{F_{1}(x;t)}}_i\!+\!\delta ^{{F_{1}(x;t)}}_i\right) {t_2}\theta '_{t_1}(G_i(x)) \\& - \nu ^{{F_{2}(x;t)}}_i + \mu ^{{F_{2}(x;t)}}_i + \delta ^{{F_{2}(x;t)}}_i,\\&\lambda ^H_i=-\eta ^H_i + \eta ^\Phi _i{F_{2i}(x;t)}-\left( \eta ^\Phi _i{F_{1i}(x;t)}\!-\!\nu ^{{F_{2}(x;t)}}_i\!+\!\mu ^{{F_{2}(x;t)}}_i\!+\!\delta ^{{F_{2}(x;t)}}_i\right) {t_2}\theta '_{t_1}(H_i(x)) \\& + \nu ^{{F_{1}(x;t)}}_i -\mu ^{{F_{1}(x;t)}}_i+\delta ^{{F_{1}(x;t)}}_i. \end{aligned} \end{aligned}$$

By linear independence assumption, we obtain

$$\begin{aligned} \begin{aligned}&\eta ^g=0, \eta ^h=0, \eta ^G=0, \eta ^H=0,\eta ^\Phi _i=0 \ \forall i \in \mathcal {I}_{GH}^{0+}(x;t) \cup \mathcal {I}_{GH}^{+0}(x;t), \\&-\nu ^{{F_{1}(x;t)}}_i {t_2}\theta '_{t_1}(G_i(x)) - \nu ^{{F_{2}(x;t)}}_i=0 \text{ and } \nu ^{{F_{2}(x;t)}}_i {t_2}\theta '_{t_1}(H_i(x)) + \nu ^{{F_{1}(x;t)}}_i=0, \forall i \in I,\\&\mu ^{{F_{1}(x;t)}}_i {t_2}\theta '_{t_1}(G_i(x)) \!+\! \mu ^{{F_{2}(x;t)}}_i\!=0 \text{ and } -\!\mu ^{{F_{2}(x;t)}}_i {t_2}\theta '_{t_1}(H_i(x)) - \mu ^{{F_{1}(x;t)}}_i\!=0, \forall i \in I^c,\\&-\!\delta ^{{F_{1}(x;t)}}_i {t_2}\theta '_{t_1}(G_i(x)) \!+\! \delta ^{{F_{2}(x;t)}}_i \!\!=0 \text{ and } \!-\!\delta ^{{F_{2}(x;t)}}_i {t_2}\theta '_{t_1}(H_i(x)) \!+\! \delta ^{{F_{1}(x;t)}}_i\!=0, \forall i \in I^-. \end{aligned} \end{aligned}$$

So, it follows for \(i \in I^-\) that

$$\begin{aligned} \delta ^{{F_{2}(x;t)}}_i=\delta ^{{F_{1}(x;t)}}_i {t_2}\theta '_{t_1}(G_i(x)) \text{ and } \delta ^{{F_{1}(x;t)}}_i=\delta ^{{F_{2}(x;t)}}_i {t_2}\theta '_{t_1}(H_i(x)). \end{aligned}$$

So \(\delta ^{{F_{1}(x;t)}}_i=\delta ^{{F_{2}(x;t)}}_i=0\), since \(i \in \mathcal {I}_{GH}^{00}(x;t)\) gives

$${t_2}\theta '_{t_1}(G_i(x)){t_2}\theta '_{t_1}(H_i(x))={t_2}\theta '_{t_1}(0){t_2}\theta '_{t_1}(0)<1$$

by properties of \(\theta \) and (3.8). Similarly, we get \(\mu ^{{F_{1}(x;t)}}_i=\mu ^{{F_{2}(x;t)}}_i=\nu ^{{F_{2}(x;t)}}_i=\nu ^{{F_{1}(x;t)}}_i=0\). \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dussault, JP., Haddou, M., Migot, T. (2021). The New Butterfly Relaxation Method for Mathematical Programs with Complementarity Constraints. In: Laha, V., Maréchal, P., Mishra, S.K. (eds) Optimization, Variational Analysis and Applications. IFSOVAA 2020. Springer Proceedings in Mathematics & Statistics, vol 355. Springer, Singapore. https://doi.org/10.1007/978-981-16-1819-2_3

Download citation

Publish with us

Policies and ethics