Skip to main content

Principle of Cancer Radiotherapy

  • Chapter
  • First Online:
Radiotherapy of Liver Cancer

Abstract

Radiotherapy is one of the most common types of nonsurgical anticancer treatment modality, employed in more than 50% of cases. Almost half of cancer patients are cured of their cancer by radiotherapy as part of their anticancer treatment. Radiotherapy kills cancer by the use of ionizing radiation which causes permanent and irreversible double-strand DNA breaks in cancer cells leading to cell death. Unfortunately, it can also kill normal cells leading to acute and chronic treatment-related complications. Traditionally, radiotherapy was seldom employed in the treatment of hepatocellular carcinoma (HCC) because of the risk of severe and sometimes irreversible radiation-induced liver injury (RILD), since a large volume of normal liver which took into account the physiological movement of the liver and the tumors inside during breathing might be irradiated. However, with the advent of new radiation technologies and motion management devices, radiation therapy can now be safely delivered to liver tumors. Further radiation dose escalation in the form of hypofractionated stereotactic body radiation therapy (SBRT) is also now feasible, which delivers a high dose of radiation to the tumors while sparing the adjacent normal organs from unnecessary irradiation, leading to a much better tumor response and favorable safety profile. Furthermore, endovascular radioembolization with radioisotope also produced encouraging results in the treatment of unresectable HCC. In this chapter, we will describe how radiotherapy works in cancer cells and elucidate different types of radiation therapy for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delaney G, Jacob S, Featherstone C, et al. The role of radiotherapy in cancer treatment: estimating optimal utilisation from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–37.

    Article  Google Scholar 

  2. Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80(3):938–46.

    Article  Google Scholar 

  3. Shimohigashi Y, Toya R, Saito T, et al. Tumor motion changes in stereotactic body radiotherapy for liver tumors: an evaluation based on four-dimensional cone-beam computed tomography and fiducial markers. Radiat Oncol. 2017;12(1):61.

    Article  Google Scholar 

  4. RTOG-1112 Randomized phase III study of sorafenib versus stereotactic body radiation therapy followed by sorafenib in hepatocellular carcinoma. NRG Oncol. https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-1112?filter=rtog-1112

  5. Hanna GG, Murray L, Patel R, et al. UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol (R Coll Radiol). 2018;30(1):5–14.

    Article  CAS  Google Scholar 

  6. Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal tissue constraints for abdominal and thoracic stereotactic body radiotherapy. Semin Radiat Oncol. 2017;27:197–208.

    Article  Google Scholar 

  7. Thomas TO, Hasan S, Small W Jr, et al. The tolerance of gastrointestinal organs to stereotactic body radiation therapy: what do we know so far? J Gastrointest Oncol. 2014;5:236–46.

    PubMed  PubMed Central  Google Scholar 

  8. Milano MT, Katz AW, Schell MC, Phillip A, Okunieff P. Descriptive analysis of oligometastatic lesions treated with curative-intent stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:1516–22.

    Article  Google Scholar 

  9. von Siebenthal M, Székely G, Lomax AJ, Cattin PC. Systematic errors in respiratory gating due to intrafraction deformations of the liver. Med Phys. 2007;34(9):3620–9.

    Article  Google Scholar 

  10. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Therapy Nucl Med. 1965;93:200–8.

    CAS  Google Scholar 

  11. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53:810–21.

    Article  Google Scholar 

  12. Hou JZ, Zeng ZC, Wang BL, Yang P, Zhang JY, Mo HF. High dose radiotherapy with image-guided hypo-IMRT for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombi is more feasible and efficacious than conventional 3D-CRT. Jpn J Clin Oncol. 2016;46(4):357–62.

    Article  Google Scholar 

  13. Wang PM, Hsu WC, Chung NN, et al. Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients. Radiat Oncol. 2014;9:18.

    Article  Google Scholar 

  14. Bae SH, Jang WI, Park HC. Intensity-modulated radiotherapy for hepatocellular carcinoma: dosimetric and clinical results. Oncotarget. 2017;8(35):59965–76.

    Article  Google Scholar 

  15. Kim JW, Kim DY, Han KH, Seong J. Phase I/II trial of helical IMRT-based stereotactic body radiotherapy for hepatocellular carcinoma. Dig Liver Dis. 2019;51(3):445–51.

    Article  Google Scholar 

  16. Scorsetti M, Comito T, Cozzi L, et al. The challenge of inoperable hepatocellular carcinoma (HCC): results of a single-institutional experience on stereotactic body radiation therapy (SBRT). J Cancer Res Clin Oncol. 2015;141(7):1301–9.

    Article  CAS  Google Scholar 

  17. Jin L, Price RA, Wang L, et al. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery-radiotherapy combined system. Med Phys. 2016;43(2):727–33.

    Article  Google Scholar 

  18. Venkatanarasimha N, Gogna A, Tong KTA, et al. Radioembolisation of hepatocellular carcinoma: a primer. Clin Radiol. 2017;72:1002–13.

    Article  CAS  Google Scholar 

  19. Riaz A, Kulik L, Lewandowski RJ, et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology. 2009;49:1185–93.

    Article  Google Scholar 

  20. Chow PKH, Gandhi M, Tan SB, et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36(19):1913–21.

    Article  CAS  Google Scholar 

  21. Vilgrain V, Pereira H, Assenat E, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624–36.

    Article  CAS  Google Scholar 

  22. Bujold A, Massey CA, Kim JJ, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31:1631–9.

    Article  Google Scholar 

  23. Chapman TR, Bowen SR, Schaub SK, et al. Toward consensus reporting of radiation-induced liver toxicity in the treatment of primary liver malignancies: defining clinically relevant endpoints. Pract Radiat Oncol. 2017;8(3):157–66.

    Article  Google Scholar 

  24. Culleton S, Jiang H, Haddad CR, et al. Outcomes following definitive stereotactic body radiotherapy for patients with Child-Pugh B or C hepatocellular carcinoma. Radiother Oncol. 2014;111:412–7.

    Article  Google Scholar 

  25. Lasley FD, Mannina EM, Johnson CS, et al. Treatment variables related to liver toxicity in patients with hepatocellular carcinoma, Child-Pugh class A and B enrolled in a phase1-2 trial of stereotactic body radiation therapy. Pract Radiat Oncol. 2015;5:e443–9.

    Article  Google Scholar 

  26. Que J, Kuo HT, Lin LC, et al. Clinical outcomes and prognostic factors of cyberknife stereotactic body radiation therapy for unresectable hepatocellular carcinoma. BMC Cancer. 2016;16:451.

    Article  Google Scholar 

  27. Sanuki N, Takeda A, Oku Y, et al. Influence of liver toxicities on prognosis after stereotactic body radiation therapy for hepatocellular carcinoma. Hepatol Res. 2015;45:540–7.

    Article  Google Scholar 

  28. Sanuki N, Takeda A, Oku Y, et al. Stereotactic body radiotherapy for small hepatocellular carcinoma: a retrospective outcome analysis in 185 patients. Acta Oncol. 2014;53:399–404.

    Article  Google Scholar 

  29. Song JH, Jeong BK, Choi HS, et al. Defining radiation-induced hepatic toxicity in hepatocellular carcinoma patients treated with stereotactic body radiotherapy. J Cancer. 2017;8:4155–61.

    Article  Google Scholar 

  30. Velec M, Haddad CR, Craig T, et al. Predictors of liver toxicity following stereotactic body radiation therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2017;97:939–46.

    Article  Google Scholar 

  31. Giovannini G, Bohlen T, Cabal G, et al. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016;11:68.

    Article  Google Scholar 

  32. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59:R419–72.

    Article  Google Scholar 

  33. Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53:407–21.

    Article  Google Scholar 

  34. Habermehl D, Ilicic K, Dehne S, et al. The relative biological effectiveness for carbon and oxygen ion beams using theraster-scanning technique in hepatocellular carcinoma cell lines. PLoS One. 2014;9:e113591.

    Article  Google Scholar 

  35. Habermehl D, Debus J, Ganten T, et al. Hypofractionated carbon ion therapy delivered with scanned ion beams for patients with hepatocellular carcinoma -feasibility and clinical response. Radiat Oncol. 2013;l8:59.

    Article  Google Scholar 

  36. El Shafie RA, Habermehl D, Rieken S, et al. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J Radiat Res. 2013;54(Suppl 1):i113–9.

    Article  Google Scholar 

  37. Dreher C, Habermehl D, Ecker S, et al. Optimization of carbon ion and proton treatment plans using the raster-scanning technique for patients with unresectable pancreatic cancer. Radiat Oncol. 2015;10:237.

    Article  Google Scholar 

  38. Combs SE, Zipp L, Rieken S, et al. In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells. Radiat Oncol. 2012;7:9.

    Article  Google Scholar 

  39. Kamada T, Tsujii H, Blakely EA, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015;16:e93–e100.

    Article  Google Scholar 

  40. Dehne S, Fritz C, Rieken S, et al. Combination of photon and carbon ion irradiation with targeted therapy substances temsirolimus and gemcitabine in hepatocellular carcinoma cell lines. Front Oncol. 2017;7:35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Wing-Mui Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, V.HF., Lee, A.WM. (2021). Principle of Cancer Radiotherapy. In: Seong, J. (eds) Radiotherapy of Liver Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-1815-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1815-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1814-7

  • Online ISBN: 978-981-16-1815-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics