Skip to main content

Correlation Analysis of Node and Edge Centrality Measures in Artificial Complex Networks

  • Conference paper
  • First Online:
Proceedings of Sixth International Congress on Information and Communication Technology

Abstract

The role of an actor in a social network is identified through a set of measures called centrality. Degree centrality, betweenness centrality, closeness centrality, and clustering coefficient are the most frequently used metrics to compute the node centrality. Their computational complexity in some cases makes unfeasible, when not practically impossible, their computations. For this reason, we focused on two alternative measures, WERW-Kpath and Game of Thieves, which are at the same time highly descriptive and computationally affordable. Our experiments show that a strong correlation exists between WERW-Kpath and Game of Thieves and the classical centrality measures. This may suggest the possibility of using them as useful and more economic replacements of the classical centrality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.emilio.ferrara.name/code/werw-kpath/.

  2. 2.

    Available at http://github.com/dcmocanu/centrality-metrics-complex-networks.

References

  1. Ficara A, Cavallaro L, De Meo P, Fiumara G, Catanese S, Bagdasar O, Liotta A (2020) Social network analysis of Sicilian Mafia interconnections. In: Cherifi H, Gaito S, Mendes JF, Moro E, Rocha LM (eds) Complex networks and their applications VIII. Springer International Publishing, Cham, pp 440–450. https://doi.org/10.1007/978-3-030-36683-4_36

  2. Calderoni F, Catanese S, De Meo P, Ficara A, Fiumara G (2020) Robust link prediction in criminal networks: a case study of the Sicilian Mafia. Expert Syst Appl 161:113,666. https://doi.org/10.1016/j.eswa.2020.113666

  3. Cavallaro L, Ficara A, De Meo P, Fiumara G, Catanese S, Bagdasar O, Song W, Liotta A (2020) Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia. PLOS ONE 15(8):1–22. https://doi.org/10.1371/journal.pone.0236476

    Article  Google Scholar 

  4. Cavallaro L, Ficara A, Curreri F, Fiumara G, De Meo P, Bagdasar O, Liotta A (2021) Graph comparison and artificial models for simulating real criminal networks. In: Benito RM, Cherifi C, Cherifi H, Moro E, Rocha LM, Sales-Pardo M (eds) Complex networks and their applications IX. Springer International Publishing, Cham, pp 286–297. https://doi.org/10.1007/978-3-030-65351-4_23

  5. Wasserman S, Faust K, Granovetter M, Iacobucci D (1994) Social network analysis: methods and applications. Structural analysis in the social sciences. Cambridge University Press

    Google Scholar 

  6. De Meo P, Ferrara E, Fiumara G, Ricciardello A (2012) A novel measure of edge centrality in social networks. Knowledge Based Systems 30:136–150. https://doi.org/10.1016/j.knosys.2012.01.007

    Article  Google Scholar 

  7. De Meo P, Ferrara E, Fiumara G, Provetti A (2013) Enhancing community detection using a network weighting strategy. Information Sciences 222:648–668. https://doi.org/10.1016/j.ins.2012.08.001

    Article  MathSciNet  MATH  Google Scholar 

  8. De Meo P, Ferrara E, Fiumara G, Provetti A (2014) Mixing local and global information for community detection in large networks. Journal of Computer and System Sciences 80(1):72–87. https://doi.org/10.1016/j.jcss.2013.03.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Mocanu DC, Exarchakos G, Liotta A (2018) Decentralized dynamic understanding of hidden relations in complex networks. Scientific Reports 8(1):1571. https://doi.org/10.1038/s41598-018-19356-4

    Article  Google Scholar 

  10. Valente TW, Coronges K, Lakon C, Costenbader E (2008) How correlated are network centrality measures? Connections (Toronto, Ont.) 28(1):16–26

    Google Scholar 

  11. Shao C, Cui P, Xun P, Peng Y, Jiang X (2018) Rank correlation between centrality metrics in complex networks: An empirical study. Open Physics 16(1):1009–1023. https://doi.org/10.1515/phys-2018-0122

    Article  Google Scholar 

  12. Oldham, S., Fulcher, B., Parkes, L., Arnatkeviciute, A., Suo, C., Fornito, A.: Consistency and differences between centrality measures across distinct classes of networks. PLOS ONE 14(7), 1–23 (2019). https://doi.org/10.1371/journal.pone.0220061

  13. Ficara A, Fiumara G, De Meo P, Liotta A (2021) Correlations among Game of Thieves and other centrality measures in complex networks. In: Fortino G, Liotta A, Gravina R, Longheu A (eds) Data science and Internet of Things. Springer International Publishing. https://doi.org/10.1007/978-3-030-67197-6_3

  14. Freeman LC (1978) Centrality in social networks conceptual clarification. Social Networks 1(3):215–239. https://doi.org/10.1016/0378-8733(78)90021-7

  15. Brandes U (2008) On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30(2):136–145. https://doi.org/10.1016/j.socnet.2007.11.001

  16. Saramäki J, Kivelä M, Onnela JP, Kaski K, Kertész J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75:027,105. https://doi.org/10.1103/PhysRevE.75.027105

  17. Chen P, Popovich P (2002) Correlation: parametric and nonparametric measures. Sage university papers series. No. 07-139. Sage Publications

    Google Scholar 

  18. Spearman C (1904) General intelligence, objectively determined and measured. The American Journal of Psychology 15(2):201–292. https://doi.org/10.2307/1412107

  19. Kendall M, Gibbons J (1990) Rank correlation methods. Charles Griffin Book. E, Arnold

    Google Scholar 

  20. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

  21. Newman M, Watts D (1999) Renormalization group analysis of the small-world network model. Physics Letters A 263(4):341–346. https://doi.org/10.1016/S0375-9601(99)00757-4

  22. Erdös P, Rényi A (1959) On Random Graphs I. Publicationes Mathematicae Debrecen 6:290

    MATH  Google Scholar 

  23. Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering. Phys Rev E 65:026,107. https://doi.org/10.1103/PhysRevE.65.026107

  24. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in science conference. Pasadena, CA USA, pp 11–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Ficara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ficara, A., Fiumara, G., De Meo, P., Liotta, A. (2022). Correlation Analysis of Node and Edge Centrality Measures in Artificial Complex Networks. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Sixth International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-16-1781-2_78

Download citation

Publish with us

Policies and ethics