Abstract
In the present-day scenario, the government needs accurate information for effective road maintenance at regular intervals but road inspection requires enormous amounts of manpower every year and this obviously slows down the process due to the distance involved. So, detection of potholes on roads is noticeably required by the government for maintaining road which can be done by the techniques of deep learning. The main purpose of the project is to classify the images of roads based on condition/status, that is either it is a plain road or road with potholes. This model initially takes the pictures of the roads which is our dataset as input. These inputs are into the deep learning classification algorithms to classify the images of roads, and this classification can be helpful to assess road condition. This project replaces external manpower for road maintenance. This model is useful for the government for better road maintenance with less manpower in a small period of time.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
H. Song, K. Baek, Yungcheolbyun, Pothole Detection Using Machine learning, in 2018 Advanced Science and Technology Research Gate (2018)
A. Kulkarni, N. Mhalgi, S. Gurnani, N. Giri, Pothole Detection System using Machine Learning on Android. In 2014 Semantic Scholar
A. Rasyid, M.R.U. Albaab, M.F. Falah, Y.Y.F. Panduman, A.A. Yusuf, D.K. Basuki, A. Tjahjono, R.P.N. Budiarti, S. Sukaridhoto, F. Yudianto, H. Wicaksono, Pothole visual detection using machine learning method integrated with internet of thing video streaming platform, in 2019 International Electronics Symposium (IEC), 2019
A.A. Angulo, J.A. Vega-Fernández, L.M. Aguilar-Lobo, S. Natraj, G. Ochoa-Ruiz, Road damage detection acquisition system based on deep neural networks for physical asset management, in 2019 ITESM Campus Guadalajara
B. Varona, A. Monteserin, A. Teyseyre, A deep learning approach to automatic road surface monitoring and pothole detection. Pers. Ubiquitous Comput. 24 (2019)
A. Karmel, M. Adhithiyan, P. Senthil Kumar, Machine learning based approach for pothole detection, in 2018 International Journal of Civil Engineering and Technology (IJCIET) (2018)
S. Arjapure, D.R. Kalbande, Road pothole detection using deep learning classifiers. Int. J. Recent Technol. Eng. (IJRTE)
A. Dhiman, R. Klette, Pothole detection using computer vision and learning. IEEE Trans. Intell. Transp. Syst. (2019)
E.N. Ukhwah, E.M. Yuniarno, Y.K. Suprapto, Asphalt pavement pothole detection using deep learning method based on YOLO neural network. Int. Seminar Intell. Technol. Appl. (ISITIA) (2019)
V. Pereira, S. Tamura, S. Hayamizu, H. Fukai, A deep learning-based approach for road pothole detection in timor leste, in 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (2018)
H. Chen, M. Yao, Q. Gu, Pothole detection using location-aware convolutional neural networks. Int. J. Mach. Learn. Cybern. 11 (2020)
S. Gupta, P. Sharma, D. Sharma, V. Gupta, N. Sambyal, Detection and localization of potholes in thermal images using deep neural networks, in Multimedia Tools and Applications, vol. 79 (Springer, 2020)
P.V. Rama Raju, G. Bharga Manjari, G. Nagaraju, Brain tumour detection using convolutional neural network. Int. J. Recent Technol. Eng. (IJRTE) (2019)
Aparna, Y. Bhatia, R. Rai, V. Gupta, N. Aggarwal, A. Akula, Convolutional neural networks based potholes detection using thermal imaging. J. King Saud Univ. Comput. Inf. Sci. (2019)
H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road damage detection using deep neural networks with images captured through a smartphone. Comput. Vis. Pattern Recogn. (2018)
A. Kumar, Chakrapani, D. JyotiKalita, V.P. Singh, A modern pothole detection technique using deep learning, in 2020 2nd International Conference on Data, Engineering and Applications (IDEA)
C. Chun, S. Shim, S.-K. Ryu, Development and evaluation of automatic pothole detection using fully convolutional neural networks. J. Korea Inst. Intell. Transp. Syst. (2018)
C. Koch, I. Brilakis, Pothole detection in asphalt pavement images. Adv. Eng. Inform. Sci. Direct (2011)
K.E. An, S.W. Lee, S.-K. Ryu, D. Seo, Detecting a pothole using deep convolutional neural network models for an adaptive shock observing in a vehicle driving, in 2018 IEEE International Conference on Consumer Electronics (ICCE)
H. Maeda, Y. Sekimoto, T. S.T. Kashiyama, H. Omata, Road damage detection and classification using deep neural networks with smartphone images. Natl. Inst. Inf. Commun. Technol. (NICT) (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bhavya, P., Sharmila, C., Sai Sadhvi, Y., Prasanna, C.M.L., Ganesan, V. (2021). Pothole Detection Using Deep Learning. In: Saha, S.K., Pang, P.S., Bhattacharyya, D. (eds) Smart Technologies in Data Science and Communication. Lecture Notes in Networks and Systems, vol 210. Springer, Singapore. https://doi.org/10.1007/978-981-16-1773-7_19
Download citation
DOI: https://doi.org/10.1007/978-981-16-1773-7_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1772-0
Online ISBN: 978-981-16-1773-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)
