Skip to main content

Laser in Vaginal Rejuvenation

  • 371 Accesses

Abstract

Many factors such as the ageing process, pregnancy, the delivery may cause physiologic changes in the genital region. Once these physiological changes occurring, the main consequences noticed are the laxity and loss of tone in the pelvic floor—Sagginess of the Labia Majora due to skin laxity and loss of collagen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-1743-0_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-1743-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6

References

  1. Subak LL, Waetjen LE, van den Eeden S, Thom DH, Vittinghoff E, Brown JS. Cost of pelvic organ prolapse surgery in the United States. Obstet Gynecol. 2001;98:646–51.

    CAS  PubMed  Google Scholar 

  2. Markland AD, Richter HE, Fwu C-W, Eggers P, Kusek JW. Prevalence and trends of urinary incontinence in adults in the United States, 2001 to 2008. J Urol. 2011;186:589–93. https://doi.org/10.1016/j.juro.2011.03.114.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Hutchinson-Colas J, Segal S. Genitourinary syndrome of menopause and the use of laser therapy. Maturitas. 2015;82:342–5.

    PubMed  CrossRef  Google Scholar 

  4. Kaplan I, Goldman J, Ger R. The treatment of erosions of the uterine cervix by means of the CO2 laser. Obstet Gynecol. 1973;41(5):795–6.

    CAS  PubMed  Google Scholar 

  5. Bellina JH, Polanyi TG. Management of vaginal adenosis and related cervico-vaginal disorders in DES-exposed pregnancy by means of carbon dioxide laser surgery. J Reprod Med. 1976;16:295–6.

    CAS  PubMed  Google Scholar 

  6. Yona Tadir, MD, Adrian Gaspar, MD, Ahinoam Lev-Sagie, MD, Macrene Alexiades, MD, PhD, Red Alinsod, MD, Alex Bader, MD, Alberto Calligaro, MD, Jorge A. Elias, MD, Marco Gambaciani, MD, Jorge E. Gaviria, MD, Cheryl B. Iglesia, MD, Ksenija Selih-Martinec, MD, Patricia L. Mwesigwa, MD, Urska B. Ogrinc, MSc, MD, Stefano Salvatore, MD, Paolo Scollo, MD, Nicola Zerbinati, MD, and John Stuart Nelson, MD, PhD. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med 49:137–159 (2017).

    Google Scholar 

  7. Greco RM, Iocono JA, Ehrlich HP. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J Cell Physiol. 1998;177:465–73.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Goh JT. Biomechanical and biochemical assessments for pelvic organ prolapse. Curr Opin Obstet Gynecol. 2003;15:391–4.

    PubMed  CrossRef  Google Scholar 

  10. Alarab et al. Expression of extracellular matrix-Remodeling proteins is altered in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Reprod Sci 2014, Vol. 21(6) 704–715.

    Google Scholar 

  11. Bailey AJ. Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001;122:735–55.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990;95:649–57.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Shynlova O, Bortolini MAT, Alarab M. Genes responsible for vaginal extracellular matrix metabolism are modulated by women’s reproductive cycle and menopause. Int Braz J Urol. March–April 2013;39(2):257–67.

    PubMed  CrossRef  Google Scholar 

  14. Kerkhof MH, Hendriks L, Brölmann HAM. Changes in connective tissue in patients with pelvic organ prolapse – a review of the current literature. Int Urogynecol J. 2009;20:461–74.

    CAS  CrossRef  Google Scholar 

  15. Alperin M, Debes K, Abramowitch S, Meyn L, Moalli PA. LOXL1 deficiency negatively impacts the biomechanical properties of the mouse vagina and supportive tissues. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:977–86.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415:171–5.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Ibrahim Alkatkout, Lisolette Metller, Rupinder Ruprai, Alexandros Bader (2019). Practical Manual for Laparoscopic & Hysteroscopic Gynecological Surgery(Kiel School of Gynaecological Endoscopy). ISBN 9789352701940.

    Google Scholar 

  18. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol. 1997;89:501–6.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Lensen EJM, Withagen MIJ, Kluivers KB, Milani AL, Vierhout ME. Surgical treatment of pelvic organ prolapse: a historical review with emphasis on the anterior compartment. Int Urogynecol J. 2013;24:1593–602.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ruiz-Zapata et al. Functional characteristics of vaginal fibroblastic cells from premenopausal women with pelvic organ prolapse. Mol Hum Reprod. 2014;20(11):1135–43.

    CrossRef  CAS  Google Scholar 

  21. Tadir et al. Light and energy based therapeutics for GSM. Lasers in surgery and medicine. Wiley Periodicals, Inc; 2017. p. 1–23.

    Google Scholar 

  22. Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–37. quiz 738–40

    PubMed  CrossRef  Google Scholar 

  23. Lev-Sagie A. Vulvar and vaginal atrophy: physiology, clinical presentation, and treatment considerations. Clin Obstet Gynecol. 2015;58(3):476–91.

    PubMed  CrossRef  Google Scholar 

  24. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Lowe NJ, Lask G, Griffin ME, et al. Skin resurfacing with the Ultrapulse carbon dioxide laser. Observations on 100 patients. Dermatol Surg. 1995;21:1025.

    CAS  PubMed  Google Scholar 

  26. Teikemeier G, Goldberg DJ. Skin resurfacing with the erbium: YAG laser. Dermatol Surg. 1997;23:685.

    CAS  PubMed  Google Scholar 

  27. Kono T, Chan HH, Groff WF, et al. Prospective direct comparison study of fractional resurfacing using different fluences and densities for skin rejuvenation in Asians. Lasers Surg Med. 2007;39:311.

    PubMed  CrossRef  Google Scholar 

  28. Sherling M, Friedman PM, Adrian R, et al. Consensus recommendations on the use of an erbium-doped 1,550-nm fractionated laser and its applications in dermatologic laser surgery. Dermatol Surg. 2010;36:461.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Hunzeker CM, Weiss ET, Geronemus RG. Fractionated CO2 laser resurfacing: our experience with more than 2000 treatments. Aesthet Surg J. 2009;29:317.

    PubMed  CrossRef  Google Scholar 

  30. Mahmoud BH, Srivastava D, Janiga JJ, et al. Safety and efficacy of erbium-doped yttrium aluminum garnet fractionated laser for treatment of acne scars in type IV to VI skin. Dermatol Surg. 2010;36:602.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Gaspar A, Addamo G, Brandi H. Vaginal fractional CO2 laser: a minimally invasive option for vaginal rejuvenation. Am J Cosmetic Surg. 2011;28(3):156–62.

    CrossRef  Google Scholar 

  32. Millheiser LS, Pauls RN, Herbst SJ, Chen BH. Radio-frequency treatment of vaginal laxity after vaginal delivery: nonsurgical vaginal tightening. J Sex Med. 2010;7(9):3088–95.

    PubMed  CrossRef  Google Scholar 

  33. Mulholland RS. Radio frequency energy for non-invasive and minimally invasive skin tightening. Clin Plast Surg. 2011;38(3):437–48.

    PubMed  CrossRef  Google Scholar 

  34. Alinsod RM. Transcutaneous temperature controlled radiofrequency for orgasmic dysfunction. Lasers Surg Med. 2016;48(7):641–5.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Salvatore S, Leone Roberti Maggiore U, Athanasiou S, et al. Histological study on the effect of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study. Menopause. 2015;22(8):845–9.

    PubMed  CrossRef  Google Scholar 

  36. Zerbinati N, Serati M, Origoni M, et al. Microscopic and ultrastructural modifications of postmenopausal atrophis vaginal mucosa after fractional carbon dioxide laser treat-ment. Lasers Med Sci. 2015;30(1):429–36.

    PubMed  CrossRef  Google Scholar 

  37. Salvatore S, Nappi RE, Zerbinati N, et al. A 12-week treatment with fractional CO2 laser for vulvovaginal atrophy: a pilot study. Climacteric. 2014;17(4):363–9.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Mac Bride MB, Rhodes DJ, Shuster LT. Vulvovaginal atrophy. Mayo Clin Proc. 2010;85(1):87–94.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Athanasiou S, Pitsouni E, Antonopoulou S, et al. The effect of microablative fractional CO2 laser on vaginal flora of postmenopausal women. Climacteric. 2016;19(5):512–8.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Hantash BM, Bedi VP, Kapadia B, et al. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39:96–107.

    PubMed  CrossRef  Google Scholar 

  41. Ishida Y, Nagata K. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol. 2011;499:167–82.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Tasab M, Batten MR, Bulleid NJ. Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J. 2000;19(10):2204–11.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Dafforn TR, Della M, Miller AD. The molecular interactions of heat shock protein 47 (Hsp47) and their implications for collagen biosynthesis. J Biol Chem. 2001;276(52):49310–9.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Prignano F, Campolmi P, Bonan P, et al. Fractional CO2 laser: a novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair. Dermatol Ther. 2009;22(Suppl 1):S8–S15.

    PubMed  CrossRef  Google Scholar 

  45. Nowak KC, McCormack M, Koch RJ. The effect of superpulsed carbon dioxide laser energy on keloid and normal dermal fibroblast secretion of growth factors: a serum-free study. Plast Reconstr Surg. 2000;105(6):2039–48.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Manolis EN, Kaklamanos IG, Spanakis N, et al. Tissue concentration of transforming growth factor b1 and basic fibroblast growth factor in skin wounds created with a CO2 laser and scalpel: a comparative experimental study, using an animal model of skin resurfacing. Wound Repair Regen. 2007;15:252–7.

    PubMed  CrossRef  Google Scholar 

  47. Orringer JS, Sachs DL, Shao Y, et al. Direct quantitative comparison of molecular responses in Photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing. Dermatol Surg. 2012;38:1668–77.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Luk€ao M, Mqjaron B, Rupnik T. Ablative and thermal effects of Er:YAG laser on human tissue. In: Waidelich W, Waidelich R, Waldschmidt J, editors. Lasers in medicine. Berlin: Springer; 1998. p. 566–72.

    Google Scholar 

  49. Majaron B, Plesteniak Luka e M. Thermo-mechanical laser ablation of soft biological tissue: Modeling the micro explosions. Appl Phys B Lasers Opt 1999;69:71–80.

    Google Scholar 

  50. Gaspar A, Brandi H, Gomez V, Luque D. Efficacy of erbium: YAG laser treatment compared to topical estriol treatment for symptoms of genitourinary syndrome of menopause. Lasers Surg Med. 2016; https://doi.org/10.1002/lsm.22569.

  51. Fistonic N, Fistonic I, Lukanovic A, Findri-Gustek S, Sorta Bilajac Turina I, Franic D. First assessment of short term efficacy of Er:YAG laser treatment on stress urinary inconti-nence in women: prospective cohort study. Climacteric. 2015;18(Sup 1):37–42.

    PubMed  CrossRef  Google Scholar 

  52. Ogrinc BU, Sencar S. Novel minimally invasive laser treatment of urinary incontinence in women. Lasers Surg Med. 2015;47:689–97.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Fistonic N, Fistonic I, Findri Gustek SS, et al. Minimally invasive, non-ablative Er:YAG laser treatment of stress urinary incontinence in women—a pilot study. J Laser Med Sci. 2016;31:635–43.

    CrossRef  Google Scholar 

  54. Pardo J, Sola V, Morales A. Treatment of female stress urinary incontinence with erbium YAG laser in non-ablative mode. Eur J Obstet Gynecol Reprod Biol. 2016;204:1–4.

    PubMed  CrossRef  Google Scholar 

  55. Tien YW, Hsiao SM, Lee CN, Lin HH. Effects of laser procedure for female urodynamic stress incontinence on pad weight, urodynamics, and sexual function. Int Urogynecol J. 2016; [Epub ahead of print]

    Google Scholar 

  56. Pitsouni E, Grigoriadis T, Tsiveleka A, et al. Microablative fractional CO2-laser therapy and the genitourinary syndrome of menopause: an observational study. Maturitas. 2016;94:131–6.

    PubMed  CrossRef  Google Scholar 

  57. Leibaschoff G, Izasa PG, Cardona JL, Miklos JR, Moore RD. Transcutaneous temperature controlled radiofrequency (TTCRF) for the treatment of menopausal vaginal/genitourinary symptoms. Surg Technol Int. 2016;26(XXIX):149–59.

    Google Scholar 

  58. Alexandros Bader. Non Invasive Labia Majora Tightening & Skin Rejuvenation with CO2 Laser FemiTight.

    Google Scholar 

  59. Kaptchuk TJ, Goldman P, Stone DA, Stason DA, Statson WB. Do medical devices have enhanced placebo effects? J Clin Epidemiol. 2000;53:786–92.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Gaspar A, Addamo G, Brandi H. Vaginal fractional CO2 laser: a minimally-invasive option for vaginal rejuvenation. Am J Cosmet Surg. 2011;28:156–62.

    CrossRef  Google Scholar 

  61. Michael Gold MD1,2,3,4 | Anneke Andriessen PhD5,6 | Alexandros Bader MD7 |Red Alinsod MD8 | Elizabeth Shane French9 | Nathan Guerette MD10 | Yegor Kolodchenko MD11 | Michael Krychman MD12 | Susan Murrmann MD13 | Julene Samuels14. Review and clinical experience exploring evidence, clinical efficacy, and safety regarding nonsurgical treatment of feminine rejuvenation. JCDI. https://doi.org/10.1111/jocd.12524.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bader, A. (2022). Laser in Vaginal Rejuvenation. In: Jindal, P., Malhotra, N., Joshi, S. (eds) Aesthetic and Regenerative Gynecology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1743-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1743-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1742-3

  • Online ISBN: 978-981-16-1743-0

  • eBook Packages: MedicineMedicine (R0)