Skip to main content

Energy-Based Devices: Comparisons and Indications

  • 366 Accesses

Abstract

Modern medicine offers a variety of treatment modalities aiming to manage a large diversity of gynecological conditions, varying from as little as topical gels or hormone-replacement therapy to invasive vaginal interventions. These feminine issues can affect women’s daily lifestyle, quality of life or project physiological effects such as decreased self-confidence or impaired sexuality. Changes due to menopause, postpartum or other causes led to an emerging number of energy-based devices (EBD) for vaginal procedures that utilize ablative or thermal effects to sculpt the external vagina or to strengthen the aging vaginal wall. Available applications are mainly lasers yet other energy-based devices have also been introduced to regenerative gynecology and urogynecology, such as various types of RF (radiofrequency derives), High-intensity focused ultrasound (HIFU), Light-emitting diodes (LED) and high-intensity focused electromagnetic field (HIFEM). Karcher& Sadick [1] claim that the commonly used term of “vaginal rejuvenation” is in fact a generalized term for a wide array of gynecological esthetic and functional procedures that aim to restore the vagina and its surrounding tissues. According to their definition, the spectrum of procedures can range from mere vaginal atrophy (VA) and dryness, treated by minimally or noninvasive strategies, to cases that require invasive intervention such as labiaplasty or vaginoplasty. This chapter aims to introduce the main available technologies offering vaginal rejuvenation and restoration, its interaction with the tissue, and compare the technological differences.

Keywords

  • Aesthetic and regenerative gynecology
  • Energy-based devices (EBD)
  • Lasers
  • Radiofrequency (RF)
  • High intensity focused ultrasound (HIFU)
  • Light emitting diodes (LED)
  • High-intensity focused electromagnetic field (HIFEM)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-1743-0_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-1743-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Diagram 6.1
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5

References

  1. Karcher C, Sadick N. Vaginal rejuvenation using energy-based devices. Int J Womens Dermatol. 2016;2(3):85–8. https://doi.org/10.1016/j.ijwd.2016.05.003.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Maiman T. Stimulated optical radiation in ruby. Nature. 1960;187:493–4. https://doi.org/10.1038/187493a0.

    CrossRef  Google Scholar 

  3. Bogdan Allemann I, Kaufman J. Laser principles. Curr Probl Dermatol. 2011;42:7–23. https://doi.org/10.1159/000328236.

    CrossRef  PubMed  Google Scholar 

  4. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science (New York, NY). 1983;220(4596):524–7. https://doi.org/10.1126/science.6836297.

    CAS  CrossRef  Google Scholar 

  5. Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky K-E, Moan J. Lasers in medicine. Rep Prog Phys. 2008;71(5):056701. https://doi.org/10.1088/0034-4885/71/5/056701.

    CAS  CrossRef  Google Scholar 

  6. Omi T, Numano K. The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther. 2014;23(1):49–60. https://doi.org/10.5978/islsm.14-RE-01.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Fisher JC. Photons, physiatrics, and physicians: a practical guide to understanding laser light interaction with living tissue, part I. J Clin Laser Med Surg. 1992;10(6):419–26. https://doi.org/10.1089/clm.1992.10.419.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Rosenberg GJ, Brito MA Jr, Aportella R, Kapoor S. Long-term histologic effects of the CO2 laser. Plast Reconstr Surg. 1999;104(7):2239–46. https://doi.org/10.1097/00006534-199912000-00046.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Tadir Y, Gaspar A, Lev-Sagie A, Alexiades M, Alinsod R, Bader A, Calligaro A, Elias JA, Gambaciani M, Gaviria JE, Iglesia CB, Selih-Martinec K, Mwesigwa PL, Ogrinc UB, Salvatore S, Scollo P, Zerbinati N, Nelson JS. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med. 2017;49(2):137–59. https://doi.org/10.1002/lsm.22637.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Kaufmann R, Hibst R. Pulsed 2.94-microns erbium-YAG laser skin ablation--experimental results and first clinical application. Clin Exp Dermatol. 1990;15(5):389–93. https://doi.org/10.1111/j.1365-2230.1990.tb02125.x.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38. https://doi.org/10.1002/lsm.20048.

    CrossRef  PubMed  Google Scholar 

  12. Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–40. https://doi.org/10.1016/j.jaad.2008.01.003.

    CrossRef  PubMed  Google Scholar 

  13. Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39(2):96–107. https://doi.org/10.1002/lsm.20468.

    CrossRef  PubMed  Google Scholar 

  14. Bellina JH, Fick AC, Jackson JD. Lasers in gynecology: an historical/developmental overview. Lasers Surg Med. 1985;5(1):1–22. https://doi.org/10.1002/lsm.1900050102.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Stafl A, Wilkinson EJ, Mattingly RF. Laser treatment of cervical and vaginal neoplasia. Am J Obstet Gynecol. 1977;128(2):128–36. https://doi.org/10.1016/0002-9378(77)90676-7.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Reid R, Absten GT. Lasers in gynecology: why pragmatic surgeons have not abandoned this valuable technology. Lasers Surg Med. 1995;17(3):201–301. https://doi.org/10.1002/lsm.1900170302.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Wallwiener D, Pollmann D, Stolz W, Rimbach S, Bastert G. Laser in gynecology: an overview. In: Bastert G, Wallwiener D, editors. Lasers in gynecology. Heidelberg: Springer; 1992. https://doi.org/10.1007/978-3-642-45683-1_1.

    CrossRef  Google Scholar 

  18. Wright VC. Laser surgery: using the carbon dioxide laser. Can Med Assoc J. 1982;126(9):1035–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheinfeld N, Lehman DS. An evidence-based review of medical and surgical treatments of genital warts. Dermatol Online J. 2006;12(3):5.

    PubMed  Google Scholar 

  20. González-Isaza P, Lotti T, França K, Sanchez-Borrego R, Tórtola JE, Lotti J, Wollina U, Tchernev G, Zerbinati N. Carbon dioxide with a new pulse profile and shape: A perfect tool to perform labiaplasty for functional and cosmetic purpose. Open Access Maced J Med Sci. 2018;6(1):25–7. https://doi.org/10.3889/oamjms.2018.043.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Kartamaa M, Reitamo S. Treatment of lichen sclerosus with carbon dioxide laser vaporization. Br J Dermatol. 1997;136(3):356–9.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Portman DJ, Gass ML, Vulvovaginal Atrophy Terminology Consensus Conference Panel. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women’s Sexual Health and the North American Menopause Society. Menopause (New York, NY). 2014;21(10):1063–8. https://doi.org/10.1097/GME.0000000000000329.

    CrossRef  Google Scholar 

  23. Arroyo C. Fractional CO2 laser treatment for vulvovaginal atrophy symptoms and vaginal rejuvenation in perimenopausal women. Int J Women’s Health. 2017;9:591–5. https://doi.org/10.2147/IJWH.S136857.

  24. Reid R. Superficial laser vulvectomy. I. the efficacy of extended superficial ablation for refractory and very extensive condylomas. Am J Obstet Gynecol. 1985;151(8):1047–52. https://doi.org/10.1016/0002-9378(85)90378-3.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Pardo J, Solà V, Ricci P, Guilloff E. Laser labioplasty of labia minora. Int J Gynaecol Obstet. 2006;93(1):38–43. https://doi.org/10.1016/j.ijgo.2006.01.002.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Samuels JB, Garcia MA. Treatment to external labia and vaginal canal with CO2 laser for symptoms of vulvovaginal atrophy in postmenopausal women. Aesthet Surg J. 2019;39(1):83–93. https://doi.org/10.1093/asj/sjy087.

    CrossRef  PubMed  Google Scholar 

  27. Gaspar A, Addamo G, Brandi H. Vaginal fractional CO2 laser: a minimally invasive option for vaginal rejuvenation. Am J Cosmet Surg. 2011;28(3):156–62. https://doi.org/10.1177/074880681102800309.

    CrossRef  Google Scholar 

  28. Zerbinati N, Serati M, Origoni M, Candiani M, Iannitti T, Salvatore S, Marotta F, Calligaro A. Microscopic and ultrastructural modifications of postmenopausal atrophic vaginal mucosa after fractional carbon dioxide laser treatment. Lasers Med Sci. 2015;30(1):429–36. https://doi.org/10.1007/s10103-014-1677-2.

    CrossRef  PubMed  Google Scholar 

  29. Preti M, Vieira-Baptista P, Digesu GA, Bretschneider CE, Damaser M, Demirkesen O, Heller DS, Mangir N, Marchitelli C, Mourad S, Moyal-Barracco M, Peremateu S, Tailor V, Tarcan T, De E, Stockdale CK. The clinical role of LASER for vulvar and vaginal treatments in gynecology and female urology: an ICS/ISSVD best practice consensus document. Neurourol Urodyn. 2019;38(3):1009–23. https://doi.org/10.1002/nau.23931.

    CrossRef  PubMed  Google Scholar 

  30. Perino A, Calligaro A, Forlani F, Tiberio C, Cucinella G, Svelato A, Saitta S, Calagna G. Vulvo-vaginal atrophy: a new treatment modality using thermo-ablative fractional CO2 laser. Maturitas. 2015;80(3):296–301. https://doi.org/10.1016/j.maturitas.2014.12.006.

    CrossRef  PubMed  Google Scholar 

  31. Gambacciani M, Levancini M, Cervigni M. Vaginal erbium laser: the second-generation thermotherapy for the genitourinary syndrome of menopause. Climacteric. 2015;18(5):757–63. https://doi.org/10.3109/13697137.2015.1045485.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Salvatore S, Nappi RE, Parma M, Chionna R, Lagona F, Zerbinati N, Ferrero S, Origoni M, Candiani M, Leone Roberti Maggiore U. Sexual function after fractional microablative CO2 laser in women with vulvovaginal atrophy. Climacteric. 2015;18(2):219–25. https://doi.org/10.3109/13697137.2014.975197.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Duncan D, Kreindel M. Basic radiofrequency: physics and safety and application to aesthetic medicine. In: Lapidoth M, Halachmi S, editors. Radiofrequency in cosmetic dermatology. Basel: Karger Publishers; 2015. p. 1–22.

    Google Scholar 

  34. Lapidoth M, Halachmi S. Radiofrequency in cosmetic dermatology. Aesthet Dermatol. Basel, Karger. 2015;2:50–61. https://doi.org/10.1159/000362767.

    CrossRef  Google Scholar 

  35. Hainer BL. Fundamentals of electrosurgery. J Am Board Fam Pract. 1991;4(6):419–26.

    CAS  PubMed  Google Scholar 

  36. Shin MK, Park JM, Lim HK, Choi JH, Baek JH, Kim HJ, Koh JS, Lee MH. Characterization of microthermal zones induced by fractional radiofrequency using reflectance confocal microscopy: a preliminary study. Lasers Surg Med. 2013;45(8):503–8. https://doi.org/10.1002/lsm.22175.

    CrossRef  PubMed  Google Scholar 

  37. Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Med Dev (Auckland, NZ). 2019;12:347–68. https://doi.org/10.2147/MDER.S214152.

    CAS  CrossRef  Google Scholar 

  38. Goats GC. Continuous short-wave (radio-frequency) diathermy. Br J Sports Med. 1989;23(2):123–7. https://doi.org/10.1136/bjsm.23.2.123.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Dillon B, Dmochowski R. Radiofrequency for the treatment of stress urinary incontinence in women. Curr Urol Rep. 2009;10(5):369–74. https://doi.org/10.1007/s11934-009-0058-z.

    CrossRef  PubMed  Google Scholar 

  40. Millheiser LS, Pauls RN, Herbst SJ, Chen BH. Radiofrequency treatment of vaginal laxity after vaginal delivery: nonsurgical vaginal tightening. J Sex Med. 2010;7(9):3088–95. https://doi.org/10.1111/j.1743-6109.2010.01910.x.

    CrossRef  PubMed  Google Scholar 

  41. Alinsod RM. Transcutaneous temperature controlled radiofrequency for orgasmic dysfunction. Lasers Surg Med. 2016;48(7):641–5. https://doi.org/10.1002/lsm.22537.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Gold M, Andriessen A, Bader A, Alinsod R, French ES, Guerette N, Kolodchenko Y, Krychman M, Murrmann S, Samuels J. Review and clinical experience exploring evidence, clinical efficacy, and safety regarding nonsurgical treatment of feminine rejuvenation. J Cosmet Dermatol. 2018;17:289–97.

    CrossRef  PubMed  Google Scholar 

  43. Sekiguchi Y, Utsugisawa Y, Azekosi Y, Kinjo M, Song M, Kubota Y, Kingsberg SA, Krychman ML. Laxity of the vaginal introitus after childbirth: nonsurgical outpatient procedure for vaginal tissue restoration and improved sexual satisfaction using low-energy radiofrequency thermal therapy. J Womens Health (Larchmt). 2013;22(9):775–81. https://doi.org/10.1089/jwh.2012.4123.

    CrossRef  Google Scholar 

  44. Dmochowski RR, Avon M, Ross J, Cooper JM, Kaplan R, Love B, Kohli N, Albala D, Shingleton B. Transvaginal radio frequency treatment of the endopelvic fascia: a prospective evaluation for the treatment of genuine stress urinary incontinence. J Urol. 2003;169(3):1028–32. https://doi.org/10.1097/01.ju.0000048686.50716.ef.

    CrossRef  PubMed  Google Scholar 

  45. Leibaschoff G, Izasa PG, Cardona JL, Miklos JR, Moore RD. Transcutaneous temperature controlled radiofrequency (TTCRF) for the treatment of menopausal vaginal/genitourinary symptoms. Surg Technol Int. 2016;29:149–59.

    PubMed  Google Scholar 

  46. Caruth JC. Evaluation of the safety and efficacy of a novel radiofrequency device for vaginal treatment. Surg Technol Int. 2018;32:145–9.

    PubMed  Google Scholar 

  47. Dayan E, Ramirez H, Theodorou S. Radiofrequency treatment of labia minora and majora: a minimally invasive approach to vulva restoration. Plast Reconstr Surg Glob Open. 2020;8(4):e2418. Published 2020 Apr 22

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci. 2014;17(1):136–53. https://doi.org/10.18433/J3ZP5F

    CrossRef  PubMed  Google Scholar 

  49. ter Haar G. Intervention and therapy. Ultrasound Med Biol. 2000;26(Suppl 1):S51–4. https://doi.org/10.1016/s0301-5629(00)00164-2.

    CrossRef  PubMed  Google Scholar 

  50. Zhou Y. Principles and applications of therapeutic ultrasound in healthcare. 1st ed. Boca Raton, FL: CRC Press; 2015. https://doi.org/10.1201/b19638.

    CrossRef  Google Scholar 

  51. Fatemi A, Kane MA. High-intensity focused ultrasound effectively reduces waist circumference by ablating adipose tissue from the abdomen and flanks: a retrospective case series. Aesthet Plast Surg. 2010;34(5):577–82. https://doi.org/10.1007/s00266-010-9503-0.

    CrossRef  Google Scholar 

  52. Robinson DM, Kaminer MS, Baumann L, Burns AJ, Brauer JA, Jewell M, Lupin M, Narurkar VA, Struck SK, Hledik J, Dover JS. High-intensity focused ultrasound for the reduction of subcutaneous adipose tissue using multiple treatment techniques. Dermatol Surg. 2014;40(6):641–51. https://doi.org/10.1111/dsu.0000000000000022.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Yagel S. High-intensity focused ultrasound: a revolution in non-invasive ultrasound treatment? Ultrasound Obstet Gynecol. 2004;23(3):216–7. https://doi.org/10.1002/uog.1017.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Laubach HJ, Makin IR, Barthe PG, Slayton MH, Manstein D. Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin. Dermatol Surg. 2008;34(5):727–34. https://doi.org/10.1111/j.1524-4725.2008.34196.x.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Fabi SG. Noninvasive skin tightening: focus on new ultrasound techniques. Clin Cosmet Investig Dermatol. 2015;8:47–52. https://doi.org/10.2147/CCID.S69118.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys. 2002;29(11):2611–20. https://doi.org/10.1118/1.1513990.

    CrossRef  PubMed  Google Scholar 

  57. Rabinovici J, Inbar Y, Revel A, Zalel Y, Gomori JM, Itzchak Y, Schiff E, Yagel S. Clinical improvement and shrinkage of uterine fibroids after thermal ablation by magnetic resonance-guided focused ultrasound surgery. Ultrasound Obstet Gynecol. 2007;30(5):771–7. https://doi.org/10.1002/uog.4099.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Elías MGJA, Corin G, Garcia PN, Sivo V, Nestor D, Nuñez L. Management of Vaginal Atrophy, vaginal Hyperlaxity and stress urinary incontinence with intravaginal high-intensity focused ultrasound (HIFU). Int J Obstet Gynaecol Res. 2019;6(2):735–65.

    Google Scholar 

  59. Alexiades M. High intensity focused electromagnetic field (HIFEM) devices in dermatology. J Drugs Dermatol. 2019;18(11):1088.

    PubMed  Google Scholar 

  60. Yamanishi T, Yasuda K, Suda S, Ishikawa N. Effect of functional continuous magnetic stimulation on urethral closure in healthy volunteers. Urology. 1999;54(4):652–5. https://doi.org/10.1016/s0090-4295(99)00194-6.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Voorham-van der Zalm PJ, Pelger RC, Stiggelbout AM, Elzevier HW, Lycklama à Nijeholt, G. A. Effects of magnetic stimulation in the treatment of pelvic floor dysfunction. BJU Int. 2006;97(5):1035–8. https://doi.org/10.1111/j.1464-410X.2006.06131.x.

    CrossRef  PubMed  Google Scholar 

  62. Strohbehn K. Normal pelvic floor anatomy. Obstet Gynecol Clin N Am. 1998;25(4):683–705. https://doi.org/10.1016/s0889-8545(05)70037-1.

    CAS  CrossRef  Google Scholar 

  63. Faubion SS, Shuster LT, Bharucha AE. Recognition and management of nonrelaxing pelvic floor dysfunction. Mayo Clin Proc. 2012;87(2):187–93. https://doi.org/10.1016/j.mayocp.2011.09.004.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Radzimińska A, Strączyńska A, Weber-Rajek M, Styczyńska H, Strojek K, Piekorz Z. The impact of pelvic floor muscle training on the quality of life of women with urinary incontinence: a systematic literature review. Clin Interv Aging. 2018;13:957–65. https://doi.org/10.2147/CIA.S160057.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Bø K. Pelvic floor muscle training is effective in treatment of female stress urinary incontinence, but how does it work? Int Urogynecol J Pelvic Floor Dysfunct. 2004;15(2):76–84. https://doi.org/10.1007/s00192-004-1125-0.

    CrossRef  PubMed  Google Scholar 

  66. Correia GN, Pereira VS, Hirakawa HS, Driusso P. Effects of surface and intravaginal electrical stimulation in the treatment of women with stress urinary incontinence: randomized controlled trial. Eur J Obstet Gynecol Reprod Biol. 2014;173:113–8. https://doi.org/10.1016/j.ejogrb.2013.11.023.

    CrossRef  PubMed  Google Scholar 

  67. Elena S, Dragana Z, Ramina S, Evgeniia A, Orazov M. Electromyographic evaluation of the pelvic muscles activity after high-intensity focused electromagnetic procedure and electrical stimulation in women with pelvic floor dysfunction. Sex Med. 2020;8(2):282–9. https://doi.org/10.1016/j.esxm.2020.01.004.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Samuels JB, Pezzella A, Berenholz J, Alinsod R. Safety and efficacy of a non-invasive high-intensity focused electromagnetic field (HIFEM) device for treatment of urinary incontinence and enhancement of quality of life. Lasers Surg Med. 2019;51(9):760–6. https://doi.org/10.1002/lsm.23106.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Hlavinka TC, Turčan P, Bader A. The use of HIFEM technology in the treatment of pelvic floor muscles as a cause of female sexual dysfunction: a multi-center pilot study. J Womens Health Care. 2019;8:1. https://doi.org/10.4172/2167-0420.1000455.

    CrossRef  Google Scholar 

  70. Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, Swan J. Light-emitting diodes: A brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36–44.

    PubMed  PubMed Central  Google Scholar 

  71. Kim WS, Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011;20(3):205–15. https://doi.org/10.5978/islsm.20.205.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Lanzafame RJ, de la Torre S, Leibaschoff GH. The rationale for Photobiomodulation therapy of vaginal tissue for treatment of genitourinary syndrome of menopause: an analysis of its mechanism of action, and current clinical outcomes. Photobiomodul Photomed Laser Surg. 2019;37(7):395–407. https://doi.org/10.1089/photob.2019.4618.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Pavie MC, Robatto M, Bastos M, Tozetto S, Boas AV, Vitale SG, Lordelo P. Blue light-emitting diode in healthy vaginal mucosa-a new therapeutic possibility. Lasers Med Sci. 2019;34(5):921–7. https://doi.org/10.1007/s10103-018-2678-3.

    CrossRef  PubMed  Google Scholar 

  74. Robatto M, Pavie MC, Garcia I, Menezes MP, Bastos M, Leite H, Noites A, Lordelo P. Ultraviolet A/blue light-emitting diode therapy for vulvovaginal candidiasis: a case presentation. Lasers Med Sci. 2019;34(9):1819–27. https://doi.org/10.1007/s10103-019-02782-9.

    CrossRef  PubMed  Google Scholar 

  75. Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci. 2020;35(6):1329–39. https://doi.org/10.1007/s10103-019-02928-9.

    CrossRef  PubMed  Google Scholar 

  76. Naranjo García P, Elias JA, Parada JG, Luciañez DZ, Pinto H. Management of vaginal atrophy with intravaginal light-emitting diodes (LEDs). Int J Obstet Gynaecol. 2018;5(2):632–41.

    Google Scholar 

  77. de la Torre S, Miller LE. Multimodal vaginal toning for bladder symptoms and quality of life in stress urinary incontinence. Int Urogynecol J. 2017;28(8):1201–7. https://doi.org/10.1007/s00192-016-3248-5.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Toledano, O. (2022). Energy-Based Devices: Comparisons and Indications. In: Jindal, P., Malhotra, N., Joshi, S. (eds) Aesthetic and Regenerative Gynecology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1743-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1743-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1742-3

  • Online ISBN: 978-981-16-1743-0

  • eBook Packages: MedicineMedicine (R0)