Karcher C, Sadick N. Vaginal rejuvenation using energy-based devices. Int J Womens Dermatol. 2016;2(3):85–8. https://doi.org/10.1016/j.ijwd.2016.05.003.
CrossRef
PubMed
PubMed Central
Google Scholar
Maiman T. Stimulated optical radiation in ruby. Nature. 1960;187:493–4. https://doi.org/10.1038/187493a0.
CrossRef
Google Scholar
Bogdan Allemann I, Kaufman J. Laser principles. Curr Probl Dermatol. 2011;42:7–23. https://doi.org/10.1159/000328236.
CrossRef
PubMed
Google Scholar
Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science (New York, NY). 1983;220(4596):524–7. https://doi.org/10.1126/science.6836297.
CAS
CrossRef
Google Scholar
Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky K-E, Moan J. Lasers in medicine. Rep Prog Phys. 2008;71(5):056701. https://doi.org/10.1088/0034-4885/71/5/056701.
CAS
CrossRef
Google Scholar
Omi T, Numano K. The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther. 2014;23(1):49–60. https://doi.org/10.5978/islsm.14-RE-01.
CrossRef
PubMed
PubMed Central
Google Scholar
Fisher JC. Photons, physiatrics, and physicians: a practical guide to understanding laser light interaction with living tissue, part I. J Clin Laser Med Surg. 1992;10(6):419–26. https://doi.org/10.1089/clm.1992.10.419.
CAS
CrossRef
PubMed
Google Scholar
Rosenberg GJ, Brito MA Jr, Aportella R, Kapoor S. Long-term histologic effects of the CO2 laser. Plast Reconstr Surg. 1999;104(7):2239–46. https://doi.org/10.1097/00006534-199912000-00046.
CAS
CrossRef
PubMed
Google Scholar
Tadir Y, Gaspar A, Lev-Sagie A, Alexiades M, Alinsod R, Bader A, Calligaro A, Elias JA, Gambaciani M, Gaviria JE, Iglesia CB, Selih-Martinec K, Mwesigwa PL, Ogrinc UB, Salvatore S, Scollo P, Zerbinati N, Nelson JS. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med. 2017;49(2):137–59. https://doi.org/10.1002/lsm.22637.
CrossRef
PubMed
PubMed Central
Google Scholar
Kaufmann R, Hibst R. Pulsed 2.94-microns erbium-YAG laser skin ablation--experimental results and first clinical application. Clin Exp Dermatol. 1990;15(5):389–93. https://doi.org/10.1111/j.1365-2230.1990.tb02125.x.
CAS
CrossRef
PubMed
Google Scholar
Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38. https://doi.org/10.1002/lsm.20048.
CrossRef
PubMed
Google Scholar
Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–40. https://doi.org/10.1016/j.jaad.2008.01.003.
CrossRef
PubMed
Google Scholar
Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39(2):96–107. https://doi.org/10.1002/lsm.20468.
CrossRef
PubMed
Google Scholar
Bellina JH, Fick AC, Jackson JD. Lasers in gynecology: an historical/developmental overview. Lasers Surg Med. 1985;5(1):1–22. https://doi.org/10.1002/lsm.1900050102.
CAS
CrossRef
PubMed
Google Scholar
Stafl A, Wilkinson EJ, Mattingly RF. Laser treatment of cervical and vaginal neoplasia. Am J Obstet Gynecol. 1977;128(2):128–36. https://doi.org/10.1016/0002-9378(77)90676-7.
CAS
CrossRef
PubMed
Google Scholar
Reid R, Absten GT. Lasers in gynecology: why pragmatic surgeons have not abandoned this valuable technology. Lasers Surg Med. 1995;17(3):201–301. https://doi.org/10.1002/lsm.1900170302.
CAS
CrossRef
PubMed
Google Scholar
Wallwiener D, Pollmann D, Stolz W, Rimbach S, Bastert G. Laser in gynecology: an overview. In: Bastert G, Wallwiener D, editors. Lasers in gynecology. Heidelberg: Springer; 1992. https://doi.org/10.1007/978-3-642-45683-1_1.
CrossRef
Google Scholar
Wright VC. Laser surgery: using the carbon dioxide laser. Can Med Assoc J. 1982;126(9):1035–9.
CAS
PubMed
PubMed Central
Google Scholar
Scheinfeld N, Lehman DS. An evidence-based review of medical and surgical treatments of genital warts. Dermatol Online J. 2006;12(3):5.
PubMed
Google Scholar
González-Isaza P, Lotti T, França K, Sanchez-Borrego R, Tórtola JE, Lotti J, Wollina U, Tchernev G, Zerbinati N. Carbon dioxide with a new pulse profile and shape: A perfect tool to perform labiaplasty for functional and cosmetic purpose. Open Access Maced J Med Sci. 2018;6(1):25–7. https://doi.org/10.3889/oamjms.2018.043.
CrossRef
PubMed
PubMed Central
Google Scholar
Kartamaa M, Reitamo S. Treatment of lichen sclerosus with carbon dioxide laser vaporization. Br J Dermatol. 1997;136(3):356–9.
CAS
CrossRef
PubMed
Google Scholar
Portman DJ, Gass ML, Vulvovaginal Atrophy Terminology Consensus Conference Panel. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women’s Sexual Health and the North American Menopause Society. Menopause (New York, NY). 2014;21(10):1063–8. https://doi.org/10.1097/GME.0000000000000329.
CrossRef
Google Scholar
Arroyo C. Fractional CO2 laser treatment for vulvovaginal atrophy symptoms and vaginal rejuvenation in perimenopausal women. Int J Women’s Health. 2017;9:591–5. https://doi.org/10.2147/IJWH.S136857.
Reid R. Superficial laser vulvectomy. I. the efficacy of extended superficial ablation for refractory and very extensive condylomas. Am J Obstet Gynecol. 1985;151(8):1047–52. https://doi.org/10.1016/0002-9378(85)90378-3.
CAS
CrossRef
PubMed
Google Scholar
Pardo J, Solà V, Ricci P, Guilloff E. Laser labioplasty of labia minora. Int J Gynaecol Obstet. 2006;93(1):38–43. https://doi.org/10.1016/j.ijgo.2006.01.002.
CAS
CrossRef
PubMed
Google Scholar
Samuels JB, Garcia MA. Treatment to external labia and vaginal canal with CO2 laser for symptoms of vulvovaginal atrophy in postmenopausal women. Aesthet Surg J. 2019;39(1):83–93. https://doi.org/10.1093/asj/sjy087.
CrossRef
PubMed
Google Scholar
Gaspar A, Addamo G, Brandi H. Vaginal fractional CO2 laser: a minimally invasive option for vaginal rejuvenation. Am J Cosmet Surg. 2011;28(3):156–62. https://doi.org/10.1177/074880681102800309.
CrossRef
Google Scholar
Zerbinati N, Serati M, Origoni M, Candiani M, Iannitti T, Salvatore S, Marotta F, Calligaro A. Microscopic and ultrastructural modifications of postmenopausal atrophic vaginal mucosa after fractional carbon dioxide laser treatment. Lasers Med Sci. 2015;30(1):429–36. https://doi.org/10.1007/s10103-014-1677-2.
CrossRef
PubMed
Google Scholar
Preti M, Vieira-Baptista P, Digesu GA, Bretschneider CE, Damaser M, Demirkesen O, Heller DS, Mangir N, Marchitelli C, Mourad S, Moyal-Barracco M, Peremateu S, Tailor V, Tarcan T, De E, Stockdale CK. The clinical role of LASER for vulvar and vaginal treatments in gynecology and female urology: an ICS/ISSVD best practice consensus document. Neurourol Urodyn. 2019;38(3):1009–23. https://doi.org/10.1002/nau.23931.
CrossRef
PubMed
Google Scholar
Perino A, Calligaro A, Forlani F, Tiberio C, Cucinella G, Svelato A, Saitta S, Calagna G. Vulvo-vaginal atrophy: a new treatment modality using thermo-ablative fractional CO2 laser. Maturitas. 2015;80(3):296–301. https://doi.org/10.1016/j.maturitas.2014.12.006.
CrossRef
PubMed
Google Scholar
Gambacciani M, Levancini M, Cervigni M. Vaginal erbium laser: the second-generation thermotherapy for the genitourinary syndrome of menopause. Climacteric. 2015;18(5):757–63. https://doi.org/10.3109/13697137.2015.1045485.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Salvatore S, Nappi RE, Parma M, Chionna R, Lagona F, Zerbinati N, Ferrero S, Origoni M, Candiani M, Leone Roberti Maggiore U. Sexual function after fractional microablative CO2 laser in women with vulvovaginal atrophy. Climacteric. 2015;18(2):219–25. https://doi.org/10.3109/13697137.2014.975197.
CAS
CrossRef
PubMed
Google Scholar
Duncan D, Kreindel M. Basic radiofrequency: physics and safety and application to aesthetic medicine. In: Lapidoth M, Halachmi S, editors. Radiofrequency in cosmetic dermatology. Basel: Karger Publishers; 2015. p. 1–22.
Google Scholar
Lapidoth M, Halachmi S. Radiofrequency in cosmetic dermatology. Aesthet Dermatol. Basel, Karger. 2015;2:50–61. https://doi.org/10.1159/000362767.
CrossRef
Google Scholar
Hainer BL. Fundamentals of electrosurgery. J Am Board Fam Pract. 1991;4(6):419–26.
CAS
PubMed
Google Scholar
Shin MK, Park JM, Lim HK, Choi JH, Baek JH, Kim HJ, Koh JS, Lee MH. Characterization of microthermal zones induced by fractional radiofrequency using reflectance confocal microscopy: a preliminary study. Lasers Surg Med. 2013;45(8):503–8. https://doi.org/10.1002/lsm.22175.
CrossRef
PubMed
Google Scholar
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Med Dev (Auckland, NZ). 2019;12:347–68. https://doi.org/10.2147/MDER.S214152.
CAS
CrossRef
Google Scholar
Goats GC. Continuous short-wave (radio-frequency) diathermy. Br J Sports Med. 1989;23(2):123–7. https://doi.org/10.1136/bjsm.23.2.123.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dillon B, Dmochowski R. Radiofrequency for the treatment of stress urinary incontinence in women. Curr Urol Rep. 2009;10(5):369–74. https://doi.org/10.1007/s11934-009-0058-z.
CrossRef
PubMed
Google Scholar
Millheiser LS, Pauls RN, Herbst SJ, Chen BH. Radiofrequency treatment of vaginal laxity after vaginal delivery: nonsurgical vaginal tightening. J Sex Med. 2010;7(9):3088–95. https://doi.org/10.1111/j.1743-6109.2010.01910.x.
CrossRef
PubMed
Google Scholar
Alinsod RM. Transcutaneous temperature controlled radiofrequency for orgasmic dysfunction. Lasers Surg Med. 2016;48(7):641–5. https://doi.org/10.1002/lsm.22537.
CrossRef
PubMed
PubMed Central
Google Scholar
Gold M, Andriessen A, Bader A, Alinsod R, French ES, Guerette N, Kolodchenko Y, Krychman M, Murrmann S, Samuels J. Review and clinical experience exploring evidence, clinical efficacy, and safety regarding nonsurgical treatment of feminine rejuvenation. J Cosmet Dermatol. 2018;17:289–97.
CrossRef
PubMed
Google Scholar
Sekiguchi Y, Utsugisawa Y, Azekosi Y, Kinjo M, Song M, Kubota Y, Kingsberg SA, Krychman ML. Laxity of the vaginal introitus after childbirth: nonsurgical outpatient procedure for vaginal tissue restoration and improved sexual satisfaction using low-energy radiofrequency thermal therapy. J Womens Health (Larchmt). 2013;22(9):775–81. https://doi.org/10.1089/jwh.2012.4123.
CrossRef
Google Scholar
Dmochowski RR, Avon M, Ross J, Cooper JM, Kaplan R, Love B, Kohli N, Albala D, Shingleton B. Transvaginal radio frequency treatment of the endopelvic fascia: a prospective evaluation for the treatment of genuine stress urinary incontinence. J Urol. 2003;169(3):1028–32. https://doi.org/10.1097/01.ju.0000048686.50716.ef.
CrossRef
PubMed
Google Scholar
Leibaschoff G, Izasa PG, Cardona JL, Miklos JR, Moore RD. Transcutaneous temperature controlled radiofrequency (TTCRF) for the treatment of menopausal vaginal/genitourinary symptoms. Surg Technol Int. 2016;29:149–59.
PubMed
Google Scholar
Caruth JC. Evaluation of the safety and efficacy of a novel radiofrequency device for vaginal treatment. Surg Technol Int. 2018;32:145–9.
PubMed
Google Scholar
Dayan E, Ramirez H, Theodorou S. Radiofrequency treatment of labia minora and majora: a minimally invasive approach to vulva restoration. Plast Reconstr Surg Glob Open. 2020;8(4):e2418. Published 2020 Apr 22
CrossRef
PubMed
PubMed Central
Google Scholar
Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci. 2014;17(1):136–53. https://doi.org/10.18433/J3ZP5F
CrossRef
PubMed
Google Scholar
ter Haar G. Intervention and therapy. Ultrasound Med Biol. 2000;26(Suppl 1):S51–4. https://doi.org/10.1016/s0301-5629(00)00164-2.
CrossRef
PubMed
Google Scholar
Zhou Y. Principles and applications of therapeutic ultrasound in healthcare. 1st ed. Boca Raton, FL: CRC Press; 2015. https://doi.org/10.1201/b19638.
CrossRef
Google Scholar
Fatemi A, Kane MA. High-intensity focused ultrasound effectively reduces waist circumference by ablating adipose tissue from the abdomen and flanks: a retrospective case series. Aesthet Plast Surg. 2010;34(5):577–82. https://doi.org/10.1007/s00266-010-9503-0.
CrossRef
Google Scholar
Robinson DM, Kaminer MS, Baumann L, Burns AJ, Brauer JA, Jewell M, Lupin M, Narurkar VA, Struck SK, Hledik J, Dover JS. High-intensity focused ultrasound for the reduction of subcutaneous adipose tissue using multiple treatment techniques. Dermatol Surg. 2014;40(6):641–51. https://doi.org/10.1111/dsu.0000000000000022.
CAS
CrossRef
PubMed
Google Scholar
Yagel S. High-intensity focused ultrasound: a revolution in non-invasive ultrasound treatment? Ultrasound Obstet Gynecol. 2004;23(3):216–7. https://doi.org/10.1002/uog.1017.
CAS
CrossRef
PubMed
Google Scholar
Laubach HJ, Makin IR, Barthe PG, Slayton MH, Manstein D. Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin. Dermatol Surg. 2008;34(5):727–34. https://doi.org/10.1111/j.1524-4725.2008.34196.x.
CAS
CrossRef
PubMed
Google Scholar
Fabi SG. Noninvasive skin tightening: focus on new ultrasound techniques. Clin Cosmet Investig Dermatol. 2015;8:47–52. https://doi.org/10.2147/CCID.S69118.
CrossRef
PubMed
PubMed Central
Google Scholar
Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys. 2002;29(11):2611–20. https://doi.org/10.1118/1.1513990.
CrossRef
PubMed
Google Scholar
Rabinovici J, Inbar Y, Revel A, Zalel Y, Gomori JM, Itzchak Y, Schiff E, Yagel S. Clinical improvement and shrinkage of uterine fibroids after thermal ablation by magnetic resonance-guided focused ultrasound surgery. Ultrasound Obstet Gynecol. 2007;30(5):771–7. https://doi.org/10.1002/uog.4099.
CAS
CrossRef
PubMed
Google Scholar
Elías MGJA, Corin G, Garcia PN, Sivo V, Nestor D, Nuñez L. Management of Vaginal Atrophy, vaginal Hyperlaxity and stress urinary incontinence with intravaginal high-intensity focused ultrasound (HIFU). Int J Obstet Gynaecol Res. 2019;6(2):735–65.
Google Scholar
Alexiades M. High intensity focused electromagnetic field (HIFEM) devices in dermatology. J Drugs Dermatol. 2019;18(11):1088.
PubMed
Google Scholar
Yamanishi T, Yasuda K, Suda S, Ishikawa N. Effect of functional continuous magnetic stimulation on urethral closure in healthy volunteers. Urology. 1999;54(4):652–5. https://doi.org/10.1016/s0090-4295(99)00194-6.
CAS
CrossRef
PubMed
Google Scholar
Voorham-van der Zalm PJ, Pelger RC, Stiggelbout AM, Elzevier HW, Lycklama à Nijeholt, G. A. Effects of magnetic stimulation in the treatment of pelvic floor dysfunction. BJU Int. 2006;97(5):1035–8. https://doi.org/10.1111/j.1464-410X.2006.06131.x.
CrossRef
PubMed
Google Scholar
Strohbehn K. Normal pelvic floor anatomy. Obstet Gynecol Clin N Am. 1998;25(4):683–705. https://doi.org/10.1016/s0889-8545(05)70037-1.
CAS
CrossRef
Google Scholar
Faubion SS, Shuster LT, Bharucha AE. Recognition and management of nonrelaxing pelvic floor dysfunction. Mayo Clin Proc. 2012;87(2):187–93. https://doi.org/10.1016/j.mayocp.2011.09.004.
CrossRef
PubMed
PubMed Central
Google Scholar
Radzimińska A, Strączyńska A, Weber-Rajek M, Styczyńska H, Strojek K, Piekorz Z. The impact of pelvic floor muscle training on the quality of life of women with urinary incontinence: a systematic literature review. Clin Interv Aging. 2018;13:957–65. https://doi.org/10.2147/CIA.S160057.
CrossRef
PubMed
PubMed Central
Google Scholar
Bø K. Pelvic floor muscle training is effective in treatment of female stress urinary incontinence, but how does it work? Int Urogynecol J Pelvic Floor Dysfunct. 2004;15(2):76–84. https://doi.org/10.1007/s00192-004-1125-0.
CrossRef
PubMed
Google Scholar
Correia GN, Pereira VS, Hirakawa HS, Driusso P. Effects of surface and intravaginal electrical stimulation in the treatment of women with stress urinary incontinence: randomized controlled trial. Eur J Obstet Gynecol Reprod Biol. 2014;173:113–8. https://doi.org/10.1016/j.ejogrb.2013.11.023.
CrossRef
PubMed
Google Scholar
Elena S, Dragana Z, Ramina S, Evgeniia A, Orazov M. Electromyographic evaluation of the pelvic muscles activity after high-intensity focused electromagnetic procedure and electrical stimulation in women with pelvic floor dysfunction. Sex Med. 2020;8(2):282–9. https://doi.org/10.1016/j.esxm.2020.01.004.
CrossRef
PubMed
PubMed Central
Google Scholar
Samuels JB, Pezzella A, Berenholz J, Alinsod R. Safety and efficacy of a non-invasive high-intensity focused electromagnetic field (HIFEM) device for treatment of urinary incontinence and enhancement of quality of life. Lasers Surg Med. 2019;51(9):760–6. https://doi.org/10.1002/lsm.23106.
CrossRef
PubMed
PubMed Central
Google Scholar
Hlavinka TC, Turčan P, Bader A. The use of HIFEM technology in the treatment of pelvic floor muscles as a cause of female sexual dysfunction: a multi-center pilot study. J Womens Health Care. 2019;8:1. https://doi.org/10.4172/2167-0420.1000455.
CrossRef
Google Scholar
Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, Swan J. Light-emitting diodes: A brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36–44.
PubMed
PubMed Central
Google Scholar
Kim WS, Calderhead RG. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011;20(3):205–15. https://doi.org/10.5978/islsm.20.205.
CrossRef
PubMed
PubMed Central
Google Scholar
Lanzafame RJ, de la Torre S, Leibaschoff GH. The rationale for Photobiomodulation therapy of vaginal tissue for treatment of genitourinary syndrome of menopause: an analysis of its mechanism of action, and current clinical outcomes. Photobiomodul Photomed Laser Surg. 2019;37(7):395–407. https://doi.org/10.1089/photob.2019.4618.
CrossRef
PubMed
PubMed Central
Google Scholar
Pavie MC, Robatto M, Bastos M, Tozetto S, Boas AV, Vitale SG, Lordelo P. Blue light-emitting diode in healthy vaginal mucosa-a new therapeutic possibility. Lasers Med Sci. 2019;34(5):921–7. https://doi.org/10.1007/s10103-018-2678-3.
CrossRef
PubMed
Google Scholar
Robatto M, Pavie MC, Garcia I, Menezes MP, Bastos M, Leite H, Noites A, Lordelo P. Ultraviolet A/blue light-emitting diode therapy for vulvovaginal candidiasis: a case presentation. Lasers Med Sci. 2019;34(9):1819–27. https://doi.org/10.1007/s10103-019-02782-9.
CrossRef
PubMed
Google Scholar
Wang T, Dong J, Yin H, Zhang G. Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: an in vitro study. Lasers Med Sci. 2020;35(6):1329–39. https://doi.org/10.1007/s10103-019-02928-9.
CrossRef
PubMed
Google Scholar
Naranjo García P, Elias JA, Parada JG, Luciañez DZ, Pinto H. Management of vaginal atrophy with intravaginal light-emitting diodes (LEDs). Int J Obstet Gynaecol. 2018;5(2):632–41.
Google Scholar
de la Torre S, Miller LE. Multimodal vaginal toning for bladder symptoms and quality of life in stress urinary incontinence. Int Urogynecol J. 2017;28(8):1201–7. https://doi.org/10.1007/s00192-016-3248-5.
CrossRef
PubMed
Google Scholar