Skip to main content

Motion Model and Filtering Techniques for Scaled Vehicle Localization with Fiducial Marker Detection

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1380))

Abstract

This paper studies the fusion of control inputs and IMU data for developing a kinematic bicycle motion model for the KTH smart mobility lab small-vehicles-for-autonomy (SVEA) platform. This motion model is filtered with relative pose estimates between a camera and fiducial markers, using both an extended Kalman filter and a particle filter. The developed motion models and filters are implemented on SVEA vehicles and are tested in the smart mobility lab. Pose estimates from the motion model and filters are compared against ground truth, determined by a motion capture system with sub-millimeter accuracy. The results presented provide the necessary base for development of automated vehicle control technologies on the SVEA platform with perception based on the detection of fiducial markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Patt. Recognit. 47, 2280–2292 (2014)

    Article  Google Scholar 

  2. Mallika, H., Vishruth, Y.S., Venkat Sai Krishna, T., Biradar, S.: Vision-based automated traffic signaling. In: Pant, M., Kumar Sharma, T., Arya, R., Sahana, B., Zolfagharinia, H. (eds) Soft Computing: Theories and Applications, (Singapore), pp. 185–195, Springer Singapore (2020)

    Google Scholar 

  3. Winkens, C., Paulus, D.: Long range optical truck tracking. In: ICAART, pp. 330–339 (2017)

    Google Scholar 

  4. Winkens, C., Fuchs, C., Neuhaus, F., Paulus, D.: Optical truck tracking for autonomous platooning. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns, (Cham), pp. 38–48, Springer International Publishing (2015)

    Google Scholar 

  5. Burgard, W., Fox, D., Thrun, S.: Active mobile robot localization. In: Proceedings of the Fifteenth International Joint Conference on Artifical Intelligence, Volume 2, IJCAI’97, (San Francisco, CA, USA), pp. 1346–1352, Morgan Kaufmann Publishers Inc. (1997)

    Google Scholar 

  6. Thrun, S.: Probabilistic algorithms in robotics. AI Mag. 21, 93 (2000)

    Google Scholar 

  7. Anderson, B., Moore, J.: Optimal Filtering. Prentice-Hall, Information and System Sciences Series (1979)

    MATH  Google Scholar 

  8. Grewal, M.S.: Kalman Filtering, pp. 705–708. Berlin, Heidelberg: Springer Berlin Heidelberg (2011)

    Google Scholar 

  9. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME J, Basic (1960)

    Book  Google Scholar 

  10. Taya, N.: Improved parameter estimation of smart grid by hybridization of kalman filter with bayesian approach. In: Pant, M., Sharma, T.K., Verma, O.P., Singla, R., Sikander, A. (eds) Soft Computing: Theories and Applications, (Singapore), pp. 1107–1115, Springer Singapore (2020)

    Google Scholar 

  11. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge, Massachusetts (2006)

    MATH  Google Scholar 

  12. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.: Particle filters for positioning, navigation, and tracking. IEEE Trans. Sig. Process. 50(2), 425–437 (2002)

    Article  Google Scholar 

  13. Mutka, A., Miklic, D., Draganjac, I., Bogdan, S.: A low cost vision based localization system using fiducial markers. In: IFAC Proceedings Volumes, vol. 41, no. 2, pp. 9528–9533 (2008). 17th IFAC World Congress

    Google Scholar 

  14. Fiala, M.: Artag. A Fiducial Marker System Using Digital Techniques 2, 590–596 (2005)

    Google Scholar 

  15. Olson, E.: Apriltag: A Robust and Flexible Visual Fiducial System, pp. 3400 – 3407 (2011)

    Google Scholar 

  16. Bačík, J., Durovsky, F., Fedor, P., Perdukova, D.: Autonomous flying with quadrocopter using fuzzy control and Aruco markers. Intell. Serv. Robot. 10 (2017)

    Google Scholar 

  17. Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving control design. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1094–1099 (2015)

    Google Scholar 

  18. Singh, R., Nagla, K.: Comparative analysis of range sensors for the robust autonomous navigation—a review. Sens. Rev. vol. ahead-of-print (2019)

    Google Scholar 

  19. Konatowski, S., Kaniewski, P., Matuszewski, J.: Comparison of estimation accuracy of ekf, ukf and pf filters. Ann. Navig. 23, 12 (2016)

    Google Scholar 

  20. Singh, R., Nagla, K.: Improved 2d laser grid mapping by solving mirror reflection uncertainty in slam. Int. J. Intell. Unmanned Syst. 6 (2018)

    Google Scholar 

  21. Moore, T., Stouch, D.: A generalized extended kalman filter implementation for the robot operating system. In: Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer (2014)

    Google Scholar 

  22. Vaughan, J., Agrawal, R.: Simultaneous localization and mapping using fiducial markers. https://github.com/UbiquityRobotics/fiducials, http://wiki.ros.org/fiducials (2020)

  23. Shah, S., Rathod, N., Saini, P.K., Patel, V., Rajput, H., Sheth, P.: Automated indian vehicle number plate detection. In: Ray, K., Sharma, T.K., Rawat, S., Saini, R.K., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications, (Singapore), pp. 453–461, Springer Singapore (2019)

    Google Scholar 

  24. Goel, R., Sharma, A., Kapoor, R.: State-of-the-art object recognition techniques: a comparative study. In: Pant, M., Sharma, T.K., Verma, O.P., Singla, R., Sikander, A. (eds) Soft Computing: Theories and Applications, (Singapore), pp. 925–932, Springer Singapore (2020)

    Google Scholar 

  25. Khurana, A., Nagla, K.S., Sharma, R.: 3d scene reconstruction of vision information for mobile robot applications. In: Pant, M., Sharma, T.K., Verma, O.P., Singla, R., Sikander, A (eds) Soft Computing: Theories and Applications, (Singapore), pp. 127–135, Springer Singapore (2020)

    Google Scholar 

Download references

Acknowledgements

All the equipment and setup to carry out the work were provided to us by the Integrated Transport Research Lab (ITRL), KTH Royal Institute of Technology. This paper was completed as part of the EL2320 Applied Estimation course at KTH, with feedback provided by Associate Professor John Folkesson. Additional support and assistance were provided by Frank Jiang and Tobias Bolin from KTH ITRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Coble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coble, K., Mahajan, A., Kaul, S., Singh, H.P. (2022). Motion Model and Filtering Techniques for Scaled Vehicle Localization with Fiducial Marker Detection. In: Sharma, T.K., Ahn, C.W., Verma, O.P., Panigrahi, B.K. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1380. Springer, Singapore. https://doi.org/10.1007/978-981-16-1740-9_47

Download citation

Publish with us

Policies and ethics