Skip to main content

Effect of Probiotics on Gut Microbiota and Brain Interactions in the Context of Neurodegenerative and Neurodevelopmental Disorders

  • Chapter
  • First Online:
Microbiome-Gut-Brain Axis

Abstract

The bidirectional communication between the gut and the brain links emotional and cognitive centers of the brain with peripheral intestinal functions. This interaction between the gut microbiota and the gut-brain axis (GBA) involves signaling from the gut microbiota to the brain and from the brain to the gut microbiota through neural, endocrine, immune, and humoral links as evidenced by germ-free animal models and association of dysbiosis with central nervous system (CNS) disorders (i.e., autism, anxiety-depressive behaviors) and functional gastrointestinal disorders. Probiotics have been reported to influence this interaction by facilitating the colonization of beneficial microorganisms and suppressing the growth of harmful microorganisms, thus improving the gut-brain interactions. Psychobiotics being a novel class of probiotics hold special significance as these affect the central nervous system-related functions and behaviors mediated by the gut-brain axis (GBA) via immune, humoral, neural, and metabolic pathways to improve not only the gastrointestinal (GI) function but also the antidepressant and anxiolytic capacity. In the past few years, some of the psychobiotic strains have been proven scientifically beneficial in suppressing inflammation and reducing cortisol levels, thus improving anxiety and depression. In addition to that, psychobiotics have shown promising results in neurodegenerative and neurodevelopmental disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and autism spectrum disorder (ASD). Initial clinical studies have shown that psychobiotics can improve overall GI function, improve symptoms of ASD, and regulate motor functions of PD patients and cognition behavior in AD patients. This chapter primarily focuses on the effect of psychobiotics on interactions between the gut microbiota and the brain in the context of neurodegenerative and neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, Taba SME, Salami M (2018) Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front Neurol 9:662

    PubMed  PubMed Central  Google Scholar 

  • Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256

    PubMed  PubMed Central  Google Scholar 

  • Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Murphy E, Cryan J, Clarke G (2016) Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 6(11):939

    Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, Washington, DC

    Google Scholar 

  • Andriessen EM, Wilson AM, Mawambo G, Dejda A, Miloudi K, Sennlaub F, Sapieha P (2016) Gut microbiota influences pathological angiogenesis in obesity-driven choroidal neovascularization. EMBO Mol Med 8(12):1366–1379. https://doi.org/10.15252/emmm.201606531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold LE (2019) Probiotics for quality of life in autism spectrum disorders. ClinicalTrials.gov NCT02903030. https://clinicaltrials.gov/ct2/show/NCT02903030. Accessed 5 March 2018

  • Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, Sharifzadeh M, Vafa M (2018) Lactobacilli and Bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 43(7):718–726

    CAS  PubMed  Google Scholar 

  • Bajinka O, Tan Y, Abdelhalim KA et al (2020) Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 10:130. https://doi.org/10.1186/s13568-020-01066-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barichella M, Cereda E, Pezzoli G (2009) Major nutritional issues in the management of Parkinson’s disease. Mov Disord 24(13):1881–1892

    PubMed  Google Scholar 

  • Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C, Pinelli G, Privitera G, Cesari I, Faierman SA, Caccialanza R, Pezzoli G, Cereda E (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87(12):1274–1280

    CAS  PubMed  Google Scholar 

  • Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    CAS  PubMed  Google Scholar 

  • Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112

    CAS  PubMed  Google Scholar 

  • Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24:405–413

    CAS  PubMed  Google Scholar 

  • Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liepelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord 30(12):1600–1611

    PubMed  Google Scholar 

  • Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK (2019) From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients 11(4):890. https://doi.org/10.3390/nu11040890

    Article  CAS  PubMed Central  Google Scholar 

  • Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, Rossi G, Eleuteri AM (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38):16050–16055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cani PD, Knauf C (2016) How gut microbes talk to organs: the role of endocrine and nervous routes. Mol Metab 5(9):743–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  • Cassani E, Privitera G, Pezzoli G, Pusani C, Madio C, Iorio L, Barichella M (2011) Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 57(2):117–121

    CAS  PubMed  Google Scholar 

  • Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA (2017) α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2:12

    Google Scholar 

  • Chandran S, Manohari SM, Raman V (2019) The gut-brain connection: a qualitative review of the conceptualisation and implications of the gut-brain-microbiome axis. Telangana J Psychiatry 5(2):94

    Google Scholar 

  • Cheng LH, Liu YW, Wu CC, Wang S, Tsai YC (2019) Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J Food Drug Anal 27(3):632–648

    CAS  PubMed  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. https://doi.org/10.1016/j.cell.2012.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB (2009) Sleep habits and susceptibility to the common cold. Arch Intern Med 169(1):62–67

    PubMed  PubMed Central  Google Scholar 

  • Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    CAS  PubMed  Google Scholar 

  • Costedio MM, Hyman N, Mawe GM (2007) Serotonin and its role in colonic function and in gastrointestinal disorders. Dis Colon Rectum 50(3):376–388

    PubMed  Google Scholar 

  • Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Dauge V et al (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    CAS  PubMed  Google Scholar 

  • De Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Rocca WA (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15. https://doi.org/10.1136/jnnp.62.1.10

    Article  PubMed  PubMed Central  Google Scholar 

  • Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170(4):1179–1188

    CAS  PubMed  Google Scholar 

  • Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726

    CAS  PubMed  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457

    CAS  PubMed  Google Scholar 

  • Enck P, Mazurak N (2018) Dysbiosis in functional bowel disorders. Ann Nutr Metab 72(4):296–306. https://doi.org/10.1159/000488773

    Article  CAS  PubMed  Google Scholar 

  • Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14(6):625–639

    CAS  PubMed  Google Scholar 

  • Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136

    PubMed  PubMed Central  Google Scholar 

  • Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu D, Ancusa OE, Georgescu LA, Ionita I, Reisz D (2016) Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: is there hope? Clin Interv Aging 11:1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Grundgeiger T, Bayen UJ, Horn SS (2014) Effects of sleep deprivation on prospective memory. Memory 22(6):679–686

    PubMed  Google Scholar 

  • Hammitt KM, et al (2019) The syndrome patient cost resources of and Sjogren’s the and value of Sjogren’s syndrome e-book: a clinical handbook, p 279

    Google Scholar 

  • Harding KL, Judah RD, Gant CE (2003) Outcome-based comparison of Ritalin® versus food-supplement treated children with AD/HD. Altern Med Rev 8(3):319–330

    PubMed  Google Scholar 

  • Havenaar R, Huis In’t Veld JHJ (1992) Probiotics: a general view. In: Wood BJB (ed) The lactic acid bacteria. Springer, Boston. https://doi.org/10.1007/978-1-4615-3522-5_6

    Chapter  Google Scholar 

  • Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12(7):656–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6(1):39–51. https://doi.org/10.1177/1756283X12459294

    Article  CAS  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    PubMed  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    CAS  Google Scholar 

  • Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    CAS  PubMed  Google Scholar 

  • Kaneita Y, Ohida T, Uchiyama M, Takemura S, Kawahara K, Yokoyama E, Miyaki T, Harano S, Suzuki K, Fujita T (2006) The relationship between depression and sleep disturbances: a Japanese nationwide general population survey. J Clin Psychiatry 67(2):196–203

    PubMed  Google Scholar 

  • Katan MB (2012) Why the European food safety authority was right to reject health claims for probiotics. Benefic Microbes 3(2):85–89. https://doi.org/10.3920/BM2012.0008

    Article  CAS  Google Scholar 

  • Kitaoka K, Uchida K, Okamoto N, Chikahisa S, Miyazaki T, Takeda E, Séi H (2009) Fermented ginseng improves the first-night effect in humans. Sleep 32(3):413–421

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203

    CAS  PubMed  Google Scholar 

  • Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM (2018) Probiotic supplementation in patients with Alzheimer’s dementia-an explorative intervention study. Curr Alzheimer Res 15(12):1106–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung K, Thuret S (2015) Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare 3:898–916

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Hao Y, Fan F, Zhang B (2018) The role of microbiome in insomnia, circadian disturbance and depression. Front Psych 9:669

    Google Scholar 

  • Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    CAS  PubMed  Google Scholar 

  • Liddle RA (2018) Parkinson’s disease from the gut. Brain Res 1693(Pt B):201–206. https://doi.org/10.1016/j.brainres.2018.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Yang CH, Lin CT, Li SW, Cheng WS, Jiang YP, Wu CC, Chang CH, Tsai YC (2015) Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathogens 7(1):1–7

    Google Scholar 

  • Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Wang S, Tsai YC (2016) Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res 1631:1–12

    CAS  PubMed  Google Scholar 

  • Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology 89(3):312–323

    CAS  Google Scholar 

  • Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33(1):73–83

    CAS  PubMed  Google Scholar 

  • Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261

    PubMed  Google Scholar 

  • Metchnikoff E, Mitchell PC (1907) Essais optimistes. C R Soc Biol 60:359–361

    Google Scholar 

  • Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, Shigyo T, Oishi K (2014) Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 111(1-2):47–52

    CAS  PubMed  Google Scholar 

  • Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S (2016) The effects of probiotics on mental health and hypothalamic–pituitary–adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19(9):387–395

    CAS  PubMed  Google Scholar 

  • Moustafa A, Li W, Anderson EL, Wong EHM, Dulai PS, Sandborn WJ, Biggs W, Yooseph S, Jones MB, Venter JC et al (2018) Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin Transl Gastroenterol 9:e132

    PubMed  PubMed Central  Google Scholar 

  • Murphy TK, Lewin AB, Storch EA, Stock S, American Academy of Child and Adolescent Psychiatry (AACAP) Committee on Quality Issues (CQI) (2013) Practice parameter for the assessment and treatment of children and adolescents with tic disorders. J Am Acad Child Adolesc Psychiatry 52(12):1341–1359. https://doi.org/10.1016/j.jaac.2013.09.015

    Article  PubMed  Google Scholar 

  • Musa NH, Mani V, Lim SM, Vidyadaran S, Majeed ABA, Ramasamy K (2017) Lactobacilli-fermented cow’s milk attenuated lipopolysaccharide-induced neuroinflammation and memory impairment in vitro and in vivo. J Dairy Res 84(4):488–495

    CAS  PubMed  Google Scholar 

  • Nakakita Y, Tsuchimoto N, Takata Y, Nakamura T (2016) Effect of dietary heat-killed Lactobacillus brevis SBC8803 (SBL88™) on sleep: a non-randomised, double blind, placebo-controlled, and crossover pilot study. Benefic Microbes 7(4):501–509

    CAS  Google Scholar 

  • Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M (2020) Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed 91(13-S):e2020024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nimgampalle M, Kuna Y (2017) Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. JCDR 11(8):KC01

    PubMed  PubMed Central  Google Scholar 

  • O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    PubMed  Google Scholar 

  • Padhy SK, Sahoo S, Mahajan S, Sinha SK (2015) Irritable bowel syndrome: Is it “irritable brain” or “irritable bowel”? J Neurosci Rural Pract 6(4):568–577

    PubMed  PubMed Central  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    PubMed  PubMed Central  Google Scholar 

  • Parracho HM, Gibson GR, Knott F, Bosscher D, Kleerebezem M, McCartney AL (2010) A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int J Probiot Prebiot 5(2):69

    Google Scholar 

  • Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E (2015) A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 77(6):823–828

    PubMed  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampello L, Alvano A, Battaglia G, Bruno V, Raffaele R, Nicoletti F (2006) Tic disorders: from pathophysiology to treatment. J Neurol 253(1):1–15

    PubMed  Google Scholar 

  • Rogers G, Keating D, Young R et al (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21:738–748. https://doi.org/10.1038/mp.2016.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roshchina VV (2016) New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Microb Endocrinol 874:25–77

    CAS  Google Scholar 

  • Rucklidge JJ (2013) Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression. Adv Mind Body Med 27(3):14–18

    PubMed  Google Scholar 

  • Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39(11):763–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savignac HM, Kiely B, Dinan TG, Cryan JF (2014) Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26(11):1615–1627

    CAS  PubMed  Google Scholar 

  • Schousboe A, Waagepetersen HS (2007) GABA: homeostatic and pharmacological aspects. Prog Brain Res 160:9–19

    CAS  PubMed  Google Scholar 

  • Shaaban SY, El Gendy YG, Mehanna NS, El-Senousy WM, ElFeki HSA, Saad K et al (2018a) The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 21:676–681

    CAS  PubMed  Google Scholar 

  • Shaaban SY, El Gendy YG, Mehanna NS, El-Senousy WM, El-Feki HS, Saad K, El-Asheer OM (2018b) The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 21(9):676–681

    CAS  PubMed  Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A 103(6):1661–1668. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 11:227–238

    CAS  PubMed  Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamtaji OR, Kouchaki E, Salami M, Aghadavod E, Akbari E, Tajabadi-Ebrahimi M, Asemi Z (2017) The effects of probiotic supplementation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr 36(8):660–665

    CAS  PubMed  Google Scholar 

  • Tamtaji OR, Taghizadeh M, Kakhaki RD, Kouchaki E, Bahmani F, Borzabadi S, Oryan S, Mafi A, Asemi Z (2019) Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38(3):1031–1035

    CAS  PubMed  Google Scholar 

  • Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–819

    CAS  PubMed  Google Scholar 

  • Tissier MH (1899) La reaction chromophile d’Escherich et le Bacterium coli. C R Seances Soc Biol Fil 51:943–945

    Google Scholar 

  • Vanuytsel T, Van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim Rasoel S, Tόth J, Holvoet L, Farré R, Van Oudenhove L, Boeckxstaens G, Verbeke K, Tack J (2014) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63(8):1293–1299

    CAS  PubMed  Google Scholar 

  • Wang LW, Tancredi DJ, Thomas DW (2011) The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. J Dev Behav Pediatr 32(5):351–360

    PubMed  Google Scholar 

  • Weisman H, Qureshi IA, Leckman JF, Scahill L, Bloch MH (2013) Systematic review: pharmacological treatment of tic disorders–efficacy of antipsychotic and alpha-2 adrenergic agonist agents. Neurosci Biobehav Rev 37(6):1162–1171

    CAS  PubMed  Google Scholar 

  • Wen L, Duffy A (2017) Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 147(7):1468S–1475S. https://doi.org/10.3945/jn.116.240754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrase J, Reimold M, Puls I, Kienast T, Heinz A (2006) Serotonergic dysfunction: brain imaging and behavioral correlates. Cogn Affect Behav Neurosci 6(1):53–61

    PubMed  Google Scholar 

  • Xu C, Zhu H, Qiu P (2019) Aging progression of human gut microbiota. BMC Microbiol 19:236. https://doi.org/10.1186/s12866-019-1616-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamura S, Morishima H, Kumano-go T, Suganuma N, Matsumoto H, Adachi H, Sigedo Y, Mikami A, Kai T, Masuyama A, Takano T, Sugita Y, Takeda M (2009) The effect of Lactobacillus helveticus fermented milk on sleep and health perception in elderly subjects. Eur J Clin Nutr 63(1):100–105

    CAS  PubMed  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Shi Y, Luo X, Peng L, Yang Y, Zou L (2017) The effect of fecal microbiota transplantation on a child with Tourette syndrome. Medicine 2017:6165239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zakira Naureen or Syed Abdullah Gilani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naureen, Z., Farooq, S., Zahoor, T., Gilani, S.A. (2022). Effect of Probiotics on Gut Microbiota and Brain Interactions in the Context of Neurodegenerative and Neurodevelopmental Disorders. In: Sayyed, R.Z., Khan, M. (eds) Microbiome-Gut-Brain Axis. Springer, Singapore. https://doi.org/10.1007/978-981-16-1626-6_19

Download citation

Publish with us

Policies and ethics