Skip to main content

Evolution-Structure Paradigm of Protein Complexes

  • Chapter
  • First Online:
Protein-Protein Interactions

Abstract

The cell carries out many sophisticated functions by employing protein complexes that comprised of several interacting partners. Therefore, it is essential to identify these complexes and also to study their structure and mechanism of formation in order to understand the cellular machinery more lucidly. This chapter discusses all such aspects of protein complexes along with some of their applications. Further, it classifies the complexes according to several criteria and provides an account of how they have evolved over time to suit the requirements of the living cell. The chapter also throws light into various patented protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnert SE, Marsh JA, Hernandez H, Robinson CV, Teichmann SA. (2015). Principles of assembly reveal a periodic table of protein complexes. Science, 350, aaa2245.

    Google Scholar 

  • Akiva E, Itzhaki Z, Margalit H. (2008). Built-in loops allow versatility in domain-domain interactions: Lessons from self-interacting domains. Proceedings of the National Academy of Sciences of the United States of America, 105, 13292-13297.

    Google Scholar 

  • Alberts B. (1998). The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell, 92, 291-294.

    Google Scholar 

  • André I, Strauss CE, Kaplan DB, Bradley P, Baker DJ. (2008). Emergence of symmetry in homooligomeric biological assemblies. Proceedings of the National Academy of Sciences, 105, 16148-16152.

    Google Scholar 

  • Antebi YE et al. (2017). Combinatorial Signal Perception in the BMP Pathway. Cell, 170, 1184-1196 e1124.

    Google Scholar 

  • Aquilina JA, Benesch JL, Bateman OA, Slingsby C, Robinson CV. (2003). Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αB-crystallin. Proceedings of the National Academy of Sciences, 100, 10611-10616.

    Google Scholar 

  • Archibald JM, Logsdon JM, Doolittle WF. (1999). Recurrent paralogy in the evolution of archaeal chaperonins. Current biology : CB, 9, 1053-1056.

    Google Scholar 

  • Audin MJC, Dorn G, Fromm SA, Reiss K, Schutz S, Vorlander MK, Sprangers R. (2013). The Archaeal Exosome: Identification and Quantification of Site-Specific Motions That Correlate with Cap and RNA Binding. Angew Chem Int Edit, 52, 8312-8316.

    Google Scholar 

  • Bahadur RP, Janin J. (2008). Residue conservation in viral capsid assembly. Proteins, 71, 407-414.

    Google Scholar 

  • Bahadur RP, Chakrabarti P, Rodier F, Janin J. (2003). Dissecting subunit interfaces in homodimeric proteins. Proteins, 53, 708-719.

    Google Scholar 

  • Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD. (2007). CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nature structural & molecular biology, 14, 738-745.

    Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TAJS. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Ã… resolution. Science, 289, 905-920.

    Google Scholar 

  • Bennett MJ, Schlunegger MP, Eisenberg D. (1995). 3D domain swapping: a mechanism for oligomer assembly. Protein science : a publication of the Protein Society, 4, 2455-2468.

    Google Scholar 

  • Bershtein S, Mu W, Shakhnovich EI. (2012). Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations. Proceedings of the National Academy of Sciences of the United States of America, 109, 4857-4862.

    Google Scholar 

  • Björklund Ã…K, Ekman D, Light S, Frey-Skött J, Elofsson AJ. (2005). Domain rearrangements in protein evolution. Journal of molecular biology, 353, 911-923.

    Google Scholar 

  • Bolanos-Garcia VM (2017) Protein Complexes in the Nucleus: The Control of Chromosome Segregation. In: Macromolecular Protein Complexes. Springer, pp 455-481

    Google Scholar 

  • Bozoky Z et al. (2013). Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions. Proceedings of the National Academy of Sciences, 110, E4427-E4436.

    Google Scholar 

  • Brinda KV, Vishveshwara S. (2005). Oligomeric protein structure networks: insights into protein-protein interactions. Bmc Bioinformatics, 6, 296.

    Google Scholar 

  • Buljan M, Frankish A, Bateman A. (2010). Quantifying the mechanisms of domain gain in animal proteins. Genome biology, 11, R74.

    Google Scholar 

  • Byron O, Lindsay JG (2017) The pyruvate dehydrogenase complex and related assemblies in health and disease. In: Macromolecular Protein Complexes. Springer, pp 523-550

    Google Scholar 

  • Cao Z, Lindsay JG (2017) The peroxiredoxin family: an unfolding story. In: Macromolecular Protein Complexes. Springer, pp 127-147

    Google Scholar 

  • Cheng KY et al. (2006). The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. The Journal of biological chemistry, 281, 23167-23179.

    Google Scholar 

  • Cramer P, Bushnell DA, Kornberg RD. (2001). Structural basis of transcription: RNA polymerase II at 2.8 angstrom ngstrom resolution. Science, 292, 1863-1876.

    Google Scholar 

  • Crick FH, Watson JD. (1956). Structure of small viruses. Nature, 177, 473-475.

    Google Scholar 

  • Dayhoff JE, Shoemaker BA, Bryant SH, Panchenko AR. (2010). Evolution of protein binding modes in homooligomers. Journal of molecular biology, 395, 860-870.

    Google Scholar 

  • Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC. (2000). Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry-Us, 39, 9275-9284.

    Google Scholar 

  • Dey S, Pal A, Chakrabarti P, Janin J. (2010). The subunit interfaces of weakly associated homodimeric proteins. Journal of molecular biology, 398, 146-160.

    Google Scholar 

  • Dill KA, Chan HS. (1997). From Levinthal to pathways to funnels. Nature structural biology, 4, 10-19.

    Google Scholar 

  • DiMaio F, Leaver-Fay A, Bradley P, Baker D, Andre I. (2011). Modeling symmetric macromolecular structures in Rosetta3. PloS one, 6, e20450.

    Article  CAS  Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. (1998). Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 93, 125-138.

    Article  CAS  Google Scholar 

  • Dobbins SE, Lesk VI, Sternberg MJE. (2008). Insights into protein flexibility: The relationship between normal modes and conformational change upon protein-protein docking. Proceedings of the National Academy of Sciences of the United States of America, 105, 10390-10395.

    Google Scholar 

  • Dobson RCJ, Valegard K, Gerrard JA. (2004). The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: Further evidence for a catalytic triad. Journal of molecular biology, 338, 329-339.

    Google Scholar 

  • Doolittle WF. (2012). Evolutionary biology: A ratchet for protein complexity. Nature, 481, 270-271.

    Google Scholar 

  • Dudley AM, Janse DM, Tanay A, Shamir R, Church GM. (2005). A global view of pleiotropy and phenotypically derived gene function in yeast. Molecular systems biology, 1, 2005 0001.

    Google Scholar 

  • Durbin SD, Feher G. (1996). Protein crystallization. Annual review of physical chemistry, 47, 171-204.

    Google Scholar 

  • Dyson HJ, Wright PE. (2002). Coupling of folding and binding for unstructured proteins. Current opinion in structural biology, 12, 54-60.

    Google Scholar 

  • Ellis RJ. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Current opinion in structural biology, 11, 114-119.

    Google Scholar 

  • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature, 402, 86-90.

    Google Scholar 

  • Esquivel-Rodríguez J, Kihara D Evaluation of multiple protein docking structures using correctly predicted pairwise subunits. In: BMC bioinformatics, 2012. vol 2. BioMed Central, pp 1-4

    Google Scholar 

  • Fernández A, Lynch M. (2011). Non-adaptive origins of interactome complexity. Nature genetics, 474, 502-505.

    Google Scholar 

  • Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. (2012). Evolution of increased complexity in a molecular machine. Nature, 481, 360-364.

    Google Scholar 

  • Fong JH, Geer LY, Panchenko AR, Bryant SH. (2007). Modeling the evolution of protein domain architectures using maximum parsimony. Journal of molecular biology, 366, 307-315.

    Google Scholar 

  • Fraser HB, Plotkin JB. (2007). Using protein complexes to predict phenotypic effects of gene mutation. Genome biology, 8, R252.

    Google Scholar 

  • Friedman FK, Beychok S. (1979). Probes of subunit assembly and reconstitution pathways in multisubunit proteins. Annual review of biochemistry, 48, 217-250.

    Google Scholar 

  • Friedrich T. (2001). Complex I: a chimaera of a redox and conformation-driven proton pump? Journal of bioenergetics and biomembranes, 33, 169-177.

    Google Scholar 

  • Fuxreiter M et al. (2014). Disordered proteinaceous machines. Chemical reviews, 114, 6806-6843.

    Google Scholar 

  • Gabaldón T, Rainey D, Huynen MA. (2005). Tracing the evolution of a large protein complex in the eukaryotes, NADH: ubiquinone oxidoreductase (Complex I). Journal of molecular biology, 348, 857-870.

    Google Scholar 

  • Garcia-Ferrer I, Marrero A, Gomis-Rüth FX, Goulas T (2017) α 2-Macroglobulins: Structure and function. In: Macromolecular Protein Complexes. Springer, pp 149-183

    Google Scholar 

  • Garcia-Seisdedos H, Villegas JA, Levy ED. (2019). Infinite assembly of folded proteins in evolution, disease, and engineering. Angewandte Chemie International Edition, 58, 5514-5531.

    Google Scholar 

  • Gavin AC et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440, 631-636.

    Google Scholar 

  • Godoy-Ruiz R, Krejcirikova A, Gallagher DT, Tugarinov V. (2011). Solution NMR evidence for symmetry in functionally or crystallographically asymmetric homodimers. Journal of the American Chemical Society, 133, 19578-19581.

    Google Scholar 

  • Goh WWB, Wong L. (2016). Integrating Networks and Proteomics: Moving Forward. Trends in biotechnology, 34, 951-959.

    Google Scholar 

  • Goodsell DS, Olson AJ. (2000). Structural symmetry and protein function. Annual review of biophysics and biomolecular structure, 29, 105-153.

    Google Scholar 

  • Griesenbeck J, Tschochner H, Grohmann D (2017) Structure and function of RNA polymerases and the transcription machineries. In: Macromolecular Protein Complexes. Springer, pp 225-270

    Google Scholar 

  • Hahn S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nature structural & molecular biology, 11, 394-403.

    Google Scholar 

  • Halebian M, Morris K, Smith C (2017) Structure and assembly of clathrin cages. In: Macromolecular Protein Complexes. Springer, pp 551-567

    Google Scholar 

  • Haley DA, Horwitz J, Stewart PL. (1998). The small heat-shock protein, αB-crystallin, has a variable quaternary structure. Journal of molecular biology, 277, 27-35.

    Google Scholar 

  • Hall Z, Politis A, Robinson CV. (2012). Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure, 20, 1596-1609.

    Google Scholar 

  • Hall Z, Hernandez H, Marsh JA, Teichmann SA, Robinson CV. (2013). The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure, 21, 1325-1337.

    Google Scholar 

  • Hashimoto K, Panchenko AR. (2010). Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proceedings of the National Academy of Sciences of the United States of America, 107, 20352-20357.

    Google Scholar 

  • Hashimoto K, Madej T, Bryant SH, Panchenko AR. (2010). Functional states of homooligomers: insights from the evolution of glycosyltransferases. Journal of molecular biology, 399, 196-206.

    Google Scholar 

  • Havugimana PC et al. (2012). A census of human soluble protein complexes. Cell, 150, 1068-1081.

    Google Scholar 

  • Hegyi H, Schad E, Tompa P. (2007). Structural disorder promotes assembly of protein complexes. BMC structural biology, 7, 65.

    Google Scholar 

  • Heldin CH. (1995). Dimerization of cell surface receptors in signal transduction. Cell, 80, 213-223.

    Google Scholar 

  • Hernandez H, Robinson CV. (2007). Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature protocols, 2, 715-726.

    Google Scholar 

  • Huang YQ, Cao HQ, Liu ZR. (2012). Three-dimensional domain swapping in the protein structure space. Proteins, 80, 1610-1619.

    Google Scholar 

  • Ishii N (2017) GroEL and the GroEL-GroES complex. In: Macromolecular Protein Complexes. Springer, pp 483-504

    Google Scholar 

  • Jaffe EK. (2005). Morpheeins - a new structural paradigm for allosteric regulation. Trends Biochem Sci, 30, 490-497.

    Google Scholar 

  • Janin J, Bahadur RP, Chakrabarti P (2008). Protein-protein interaction and quaternary structure. 41, 133-180.

    Google Scholar 

  • Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, Conti E. (2012). Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Molecular cell, 46, 274-286.

    Google Scholar 

  • Johansson M, Zhang JJ, Ehrenberg M. (2012). Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proceedings of the National Academy of Sciences of the United States of America, 109, 131-136.

    Google Scholar 

  • Kangueane P, Nilofer C (2018) Patented Protein Structural Complexes in Discovery Platform. In: Protein-Protein and Domain-Domain Interactions. Springer, pp 189-197

    Google Scholar 

  • Kim WK, Henschel A, Winter C, Schroeder M. (2006). The many faces of protein-protein interactions: A compendium of interface geometry. PLoS computational biology, 2, 1151-1164.

    Google Scholar 

  • Kleywegt GJ. (1996). Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D, 52, 842-857.

    Google Scholar 

  • Klotz IM, Langerman NR, Darnall DW. (1970). Quaternary structure of proteins. Annual review of biochemistry, 39, 25-62.

    Google Scholar 

  • Knowles TP, Vendruscolo M, Dobson CM. (2014). The amyloid state and its association with protein misfolding diseases. Nature reviews. Molecular cell biology, 15, 384-396.

    Google Scholar 

  • Koshland Jr D, Nemethy G, Filmer D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5, 365-385.

    Google Scholar 

  • Krogan NJ et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637-643.

    Google Scholar 

  • Kühner S et al. (2009). Proteome organization in a genome-reduced bacterium. Science, 326, 1235-1240.

    Google Scholar 

  • Kummerfeld SK, Teichmann SA. (2005). Relative rates of gene fusion and fission in multi-domain proteins. Trends in genetics : TIG, 21, 25-30.

    Google Scholar 

  • Landry CR, Levy ED, Abd Rabbo D, Tarassov K, Michnick SW. (2013). Extracting insight from noisy cellular networks. Cell, 155, 983-989.

    Google Scholar 

  • Latham MP, Sekhar A, Kay LE. (2014). Understanding the mechanism of proteasome 20S core particle gating. Proceedings of the National Academy of Sciences of the United States of America, 111, 5532-5537.

    Google Scholar 

  • Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. (2003). Structure and morphogenesis of bacteriophage T4. Cellular and molecular life sciences : CMLS, 60, 2356-2370.

    Google Scholar 

  • Levy Y, Cho SS, Onuchic JN, Wolynes PG. (2005). A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. Journal of molecular biology, 346, 1121-1145.

    Google Scholar 

  • Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. (2006). 3D complex: a structural classification of protein complexes. PLoS computational biology, 2, e155.

    Google Scholar 

  • Levy ED, Boeri Erba E, Robinson CV, Teichmann SA. (2008). Assembly reflects evolution of protein complexes. Nature, 453, 1262-1265.

    Google Scholar 

  • Levy ED, De S, Teichmann SA. (2012). Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proceedings of the National Academy of Sciences of the United States of America, 109, 20461-20466.

    Google Scholar 

  • Li GW, Burkhardt D, Gross C, Weissman JS. (2014). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell, 157, 624-635.

    Google Scholar 

  • Liljas L. (1999). Virus assembly. Current opinion in structural biology, 9, 129-134.

    Google Scholar 

  • Lukatsky DB, Shakhnovich BE, Mintseris J, Shakhnovich EI. (2007). Structural similarity enhances interaction propensity of proteins. Journal of molecular biology, 365, 1596-1606.

    Google Scholar 

  • Lynch M. (2007). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the United States of America, 104 Suppl 1, 8597-8604.

    Google Scholar 

  • Lynch M. (2012). The evolution of multimeric protein assemblages. Molecular biology and evolution, 29, 1353-1366.

    Google Scholar 

  • Lynch M. (2013). Evolutionary diversification of the multimeric states of proteins. Proceedings of the National Academy of Sciences of the United States of America, 110, E2821-2828.

    Google Scholar 

  • Mackinnon SS, Malevanets A, Wodak SJ. (2013). Intertwined associations in structures of homooligomeric proteins. Structure, 21, 638-649.

    Google Scholar 

  • Malay AD, Allen KN, Tolan DR. (2005). Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. Journal of molecular biology, 347, 135-144.

    Google Scholar 

  • Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285, 751-753.

    Google Scholar 

  • Marsh JA. (2013). Buried and accessible surface area control intrinsic protein flexibility. Journal of molecular biology, 425, 3250-3263.

    Google Scholar 

  • Marsh JA, Teichmann SA. (2010). How do proteins gain new domains? Genome biology, 11, 126.

    Google Scholar 

  • Marsh JA, Teichmann SA. (2011). Relative Solvent Accessible Surface Area Predicts Protein Conformational Changes upon Binding. Structure, 19, 859-867.

    Google Scholar 

  • Marsh JA, Teichmann SA. (2014a). Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays : news and reviews in molecular, cellular and developmental biology, 36, 209-218.

    Google Scholar 

  • Marsh JA, Teichmann SA. (2014b). Protein flexibility facilitates quaternary structure assembly and evolution. PLoS biology, 12, e1001870.

    Google Scholar 

  • Marsh JA, Teichmann SA. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annual review of biochemistry, 84, 551-575.

    Google Scholar 

  • Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W. (2010). Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure, 18, 1094-1103.

    Google Scholar 

  • Marsh JA, Teichmann SA, Forman-Kay JD. (2012). Probing the diverse landscape of protein flexibility and binding. Current opinion in structural biology, 22, 643-650.

    Google Scholar 

  • Marsh JA, Hernandez H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA. (2013). Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell, 153, 461-470.

    Google Scholar 

  • Mathiesen C, Hagerhall C. (2003). The 'antiporter module' of respiratory chain Complex I includes the MrpC/NuoK subunit - a revision of the modular evolution scheme. Febs Lett, 549, 7-13.

    Google Scholar 

  • McGuffee SR, Elcock AH. (2010). Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS computational biology, 6, e1000694.

    Google Scholar 

  • Michaut M, Baryshnikova A, Costanzo M, Myers CL, Andrews BJ, Boone C, Bader GD. (2011). Protein complexes are central in the yeast genetic landscape. PLoS computational biology, 7, e1001092.

    Google Scholar 

  • Mirande M (2017) The aminoacyl-tRNA synthetase complex. In: Macromolecular Protein Complexes. Springer, pp 505-522

    Google Scholar 

  • Mittag T, Kay LE, Forman-Kay JD. (2010a). Protein dynamics and conformational disorder in molecular recognition. Journal of molecular recognition : JMR, 23, 105-116.

    Google Scholar 

  • Mittag T et al. (2010b). Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure, 18, 494-506.

    Google Scholar 

  • Monie TP (2017) The canonical inflammasome: a macromolecular complex driving inflammation. In: Macromolecular Protein Complexes. Springer, pp 43-73

    Google Scholar 

  • Monod J, Wyman J, Changeux JP. (1965). On the Nature of Allosteric Transitions: A Plausible Model. Journal of molecular biology, 12, 88-118.

    Google Scholar 

  • Murray AW. (2004). Recycling the cell cycle: cyclins revisited. Cell, 116, 221-234.

    Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of molecular biology, 247, 536-540.

    Google Scholar 

  • Navia MA et al. (1989). Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature, 337, 615-620.

    Google Scholar 

  • Nguyen HC, Wang W, Xiong Y (2017) Cullin-RING E3 ubiquitin ligases: bridges to destruction. In: Macromolecular Protein Complexes. Springer, pp 323-347

    Google Scholar 

  • Nishi H, Ota M. (2010). Amino acid substitutions at protein-protein interfaces that modulate the oligomeric state. Proteins, 78, 1563-1574.

    Google Scholar 

  • Nishi H, Koike R, Ota M. (2011). Cover and spacer insertions: Small nonhydrophobic accessories that assist protein oligomerization. Proteins, 79, 2372-2379.

    Google Scholar 

  • Nourse A, Mittag T. (2014). The cytoplasmic domain of the T-cell receptor zeta subunit does not form disordered dimers. Journal of molecular biology, 426, 62-70.

    Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. (1997). CATH - a hierarchic classification of protein domain structures. Structure, 5, 1093-1108.

    Google Scholar 

  • Pané-Farré J, Quin MB, Lewis RJ, Marles-Wright J (2017) Structure and function of the stressosome signalling hub. In: Macromolecular protein complexes. Springer, pp 1-41

    Google Scholar 

  • Pasek S, Risler JL, Brezellec P. (2006). Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins. Bioinformatics, 22, 1418-1423.

    Google Scholar 

  • Pearce FG, Hudson AO, Loomes K, Dobson RC (2017) Dihydrodipicolinate synthase: structure, dynamics, function, and evolution. In: Macromolecular Protein Complexes. Springer, pp 271-289

    Google Scholar 

  • Perica T, Chothia C, Teichmann SA. (2012a). Evolution of oligomeric state through geometric coupling of protein interfaces. Proceedings of the National Academy of Sciences, 109, 8127-8132.

    Google Scholar 

  • Perica T, Marsh JA, Sousa FL, Natan E, Colwell LJ, Ahnert SE, Teichmann SA (2012b) The emergence of protein complexes: quaternary structure, dynamics and allostery. Portland Press Ltd.,

    Google Scholar 

  • Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. (2010). Transient protein-protein interactions: structural, functional, and network properties. Structure, 18, 1233-1243.

    Google Scholar 

  • Ponstingl H, Kabir T, Gorse D, Thornton JM. (2005). Morphological aspects of oligomeric protein structures. Progress in biophysics and molecular biology, 89, 9-35.

    Google Scholar 

  • Prevelige Jr PE, Thomas D, King J. (1993). Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophysical journal, 64, 824-835.

    Google Scholar 

  • Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W. (2010). Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nature structural & molecular biology, 17, 459-464.

    Google Scholar 

  • Religa TL, Sprangers R, Kay LE. (2010). Dynamic Regulation of Archaeal Proteasome Gate Opening As Studied by TROSY NMR. Science, 328, 98-102.

    Google Scholar 

  • Reuveni S, Ehrenberg M, Paulsson J. (2017). Ribosomes are optimized for autocatalytic production. Nature, 547, 293-297.

    Google Scholar 

  • Ruano-Rubio V, Fares MA. (2007). Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Molecular biology and evolution, 24, 1384-1396.

    Google Scholar 

  • Ruotolo BT, Benesch JLP, Sandercock AM, Hyung SJ, Robinson CV. (2008). Ion mobility-mass spectrometry analysis of large protein complexes. Nature protocols, 3, 1139-1152.

    Google Scholar 

  • Sartori P, Leibler S. (2019). Towards a theory of assembly of protein complexes: lessons from equilibrium statistical physics. arXiv preprint arXiv:1907.02992.

    Google Scholar 

  • Sciara G et al. (2010). Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proceedings of the National Academy of Sciences, 107, 6852-6857.

    Google Scholar 

  • Shiber A et al. (2018). Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature, 561, 268-272.

    Google Scholar 

  • Shieh YW, Minguez P, Bork P, Auburger JJ, Guilbride DL, Kramer G, Bukau B. (2015). Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science, 350, 678-680.

    Google Scholar 

  • Sobolevsky AI, Rosconi MP, Gouaux E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462, 745-756.

    Google Scholar 

  • Sprangers R, Kay LE. (2007). Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature, 445, 618-622.

    Google Scholar 

  • Sprangers R, Velyvis A, Kay LE. (2007). Solution NMR of supramolecular complexes: providing new insights into function. Nat Methods, 4, 697-703.

    Google Scholar 

  • Srihari S, Ragan MA. (2013). Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 29, 1553-1561.

    Google Scholar 

  • Srihari S, Yong CH, Wong L (2017) Computational prediction of protein complexes from protein interaction networks. Morgan & Claypool,

    Google Scholar 

  • Stein A, Pache RA, Bernado P, Pons M, Aloy P. (2009). Dynamic interactions of proteins in complex networks: a more structured view. The FEBS journal, 276, 5390-5405.

    Google Scholar 

  • Stengel F et al. (2010). Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proceedings of the National Academy of Sciences of the United States of America, 107, 2007-2012.

    Google Scholar 

  • Stock D, Leslie AG, Walker JE. (1999). Molecular architecture of the rotary motor in ATP synthase. Science, 286, 1700-1705.

    Google Scholar 

  • Stockley PG et al. (2007). A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. Journal of molecular biology, 369, 541-552.

    Google Scholar 

  • Talkington MW, Siuzdak G, Williamson JR. (2005). An assembly landscape for the 30S ribosomal subunit. Nature, 438, 628-632.

    Google Scholar 

  • Tarassov K et al. (2008). An in vivo map of the yeast protein interactome. Science, 320, 1465-1470.

    Google Scholar 

  • Tobi D, Bahar I. (2005). Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proceedings of the National Academy of Sciences of the United States of America, 102, 18908-18913.

    Google Scholar 

  • Tompa P, Fuxreiter M. (2008). Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci, 33, 2-8.

    Google Scholar 

  • Tompa P, Davey NE, Gibson TJ, Babu MM. (2014). A million peptide motifs for the molecular biologist. Molecular cell, 55, 161-169.

    Google Scholar 

  • Valle M (2017) Pyruvate Carboxylase, Structure and Function. In: Macromolecular Protein Complexes. Springer, pp 291-322

    Google Scholar 

  • Van Dam TJ, Snel B. (2008). Protein complex evolution does not involve extensive network rewiring. PLoS computational biology, 4, e1000132.

    Google Scholar 

  • van der Sluis EO, Driessen AJ. (2006). Stepwise evolution of the Sec machinery in Proteobacteria. Trends in microbiology, 14, 105-108.

    Google Scholar 

  • Vandin F, Upfal E, Raphael BJ. (2011). Algorithms for Detecting Significantly Mutated Pathways in Cancer. J Comput Biol, 18, 507-522.

    Google Scholar 

  • Venkatakrishnan A, Levy ED, Teichmann SA (2010) Homomeric protein complexes: evolution and assembly. Portland Press Ltd.,

    Google Scholar 

  • Wells M et al. (2008). Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America, 105, 5762-5767.

    Google Scholar 

  • White MR, Garcin ED (2017) D-Glyceraldehyde-3-phosphate dehydrogenase structure and function. In: Macromolecular Protein Complexes. Springer, pp 413-453

    Google Scholar 

  • Williams NK, Dichtl B. (2018). Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochemical Society transactions, 46, 197-206.

    Google Scholar 

  • Wright PE, Dyson HJ. (1999). Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of molecular biology, 293, 321-331.

    Google Scholar 

  • Xie Z, Hendrix RW. (1995). Assembly in Vitro of Bacteriophage HK97 Proheads. Journal of molecular biology, 253, 74-85.

    Google Scholar 

  • Xu M, Bai L, Gong Y, Xie W, Hang H, Jiang T. (2009). Structure and functional implications of the human rad9-hus1-rad1 cell cycle checkpoint complex. Journal of Biological Chemistry, 284, 20457-20461.

    Google Scholar 

  • Yang JR, Liao BY, Zhuang SM, Zhang J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 109, E831-840.

    Google Scholar 

  • Yévenes A (2017) The Ferritin Superfamily. In: Macromolecular Protein Complexes. Springer, pp 75-102

    Google Scholar 

  • Yu L, Reutzel-Edens SM, Mitchell CA. (2000). Crystallization and polymorphism of conformationally flexible molecules: Problems, patterns, and strategies. Org Process Res Dev, 4, 396-402.

    Google Scholar 

  • Yu Y, Smith DM, Kim HM, Rodriguez V, Goldberg AL, Cheng Y. (2010). Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions. The EMBO journal, 29, 692-702.

    Google Scholar 

  • Zhao J, Lee SH, Huss M, Holme P. (2013). The network organization of cancer-associated protein complexes in human tissues. Scientific reports, 3, 1583.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poluri, K.M., Gulati, K., Sarkar, S. (2021). Evolution-Structure Paradigm of Protein Complexes. In: Protein-Protein Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-16-1594-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1594-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1593-1

  • Online ISBN: 978-981-16-1594-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics