Skip to main content

Energetic Aspects of Protein–Protein Interactions (PPIs)

  • Chapter
  • First Online:
Protein-Protein Interactions

Abstract

The increasing demand to build holistic models of protein–protein interactions in the cell requires understanding them at the structural level. Structure in turn is elucidated by furnishing biophysical information, that is, thermodynamic and kinetic parameters of the interaction. The thermodynamic parameters that are usually calculated to understand association between proteins are the variations in free energy, entropy, heat capacity, and enthalpy. Similarly, rates of association are also determined under kinetics in order to gain better insight into these interactions. This chapter also highlights the high selectivity of PPIs and outlines basic principles of energetics and some mutagenesis studies that have been performed to get insights into the high affinity protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsallaq R, Zhou HX. (2007a). Energy landscape and transition state of protein-protein association. Biophysical journal, 92, 1486-1502.

    Google Scholar 

  • Alsallaq R, Zhou HX. (2007b). Prediction of protein-protein association rates from a transition-state theory. Structure, 15, 215-224.

    Google Scholar 

  • Altobelli G, Subramaniam S. (2000). Kinetics of association of anti-lysozyme monoclonal antibody D44.1 and hen-egg lysozyme. Biophysical journal, 79, 2954-2965.

    Google Scholar 

  • Anderson J., Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. (1998). Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. J Hum Mol Genet, 7, 1475-1483.

    Google Scholar 

  • Audie J, Scarlata S. (2007). A novel empirical free energy function that explains and predicts protein–protein binding affinities. J Biophysical chemistry, 129, 198-211.

    Google Scholar 

  • Baerga-Ortiz A, Rezaie AR, Komives EA. (2000). Electrostatic dependence of the thrombin-thrombomodulin interaction. Journal of molecular biology, 296, 651-658.

    Google Scholar 

  • Baker BM, Murphy KP. (1996). Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophysical journal, 71, 2049-2055.

    Google Scholar 

  • Baker BM, Murphy KP. (1998). Prediction of binding energetics from structure using empirical parameterization. Method Enzymol, 295, 294-315.

    Google Scholar 

  • Banerjee A, Hu J, Goss DJ. (2006). Thermodynamics of Protein− Protein Interactions of cMyc, Max, and Mad: Effect of Polyions on Protein Dimerization. Biochemistry, 45, 2333-2338.

    Google Scholar 

  • Basdevant N, Weinstein H, Ceruso M. (2006). Thermodynamic basis for promiscuity and selectivity in protein− protein interactions: PDZ domains, a case study. Journal of the American Chemical Society, 128, 12766-12777.

    Google Scholar 

  • Bass SH, Mulkerrin MG, Wells JA. (1991). A systematic mutational analysis of hormone-binding determinants in the human growth hormone receptor. Proceedings of the National Academy of Sciences of the United States of America, 88, 4498-4502.

    Google Scholar 

  • Batista FD, Neuberger MS. (1998). Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity, 8, 751-759.

    Google Scholar 

  • Beernink PT, Tolan DR. (1994). Subunit interface mutants of rabbit muscle aldolase form active dimers. Protein science : a publication of the Protein Society, 3, 1383-1391.

    Google Scholar 

  • Berg OG, von Hippel PH. (1985). Diffusion-controlled macromolecular interactions. Annual review of biophysics and biophysical chemistry, 14, 131-160.

    Google Scholar 

  • Bhat TN et al. (1994). Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proceedings of the National Academy of Sciences of the United States of America, 91, 1089-1093.

    Google Scholar 

  • Borchert TV, Abagyan R, Kishan KV, Zeelen JP, Wierenga RK. (1993). The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop. Structure, 1, 205-213.

    Google Scholar 

  • Botti SA, Felder CE, Sussman JL, Silman I. (1998). Electrotactins: a class of adhesion proteins with conserved electrostatic and structural motifs. Protein engineering, 11, 415-420.

    Google Scholar 

  • Braden BC et al. (1996). Crystal structure of the complex of the variable domain of antibody D1. 3 and turkey egg white lysozyme: a novel conformational change in antibody CDR-L3 selects for antigen. Journal of molecular biology.

    Google Scholar 

  • Brooijmans N, Sharp KA, Kuntz ID. (2002). Stability of macromolecular complexes. Proteins, 48, 645-653.

    Google Scholar 

  • Castro MJM, Anderson S. (1996). Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to β-trypsin and α-chymotrypsin. Biochemistry, 35, 11435-11446.

    Google Scholar 

  • Chen R, Li L, Weng ZP. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins-Structure Function and Bioinformatics, 52, 80-87.

    Google Scholar 

  • Chong S-H, Ham S. (2017). Dynamics of hydration water plays a key role in determining the binding thermodynamics of protein complexes. Scientific reports, 7, 1-10.

    Google Scholar 

  • Christensen JJ, Hansen LD, Izatt RM (1976) Handbook of proton ionization heats and related thermodynamic quantities. Wiley,

    Google Scholar 

  • Clackson T, Wells JA. (1995). A hot spot of binding energy in a hormone-receptor interface. Science, 267, 383-386.

    Google Scholar 

  • Cunningham BC, Wells JA. (1989). High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science, 244, 1081-1085.

    Google Scholar 

  • Cunningham BC, Wells JA. (1993). Comparison of a structural and a functional epitope. Journal of molecular biology, 234, 554-563.

    Google Scholar 

  • Darnell SJ, Page D, Mitchell JC. (2007). An automated decision-tree approach to predicting protein interaction hot spots. Proteins-Structure Function and Bioinformatics, 68, 813-823.

    Google Scholar 

  • Darnell SJ, LeGault L, Mitchell JC. (2008). KFC Server: interactive forecasting of protein interaction hot spots. Nucleic acids research, 36, W265-269.

    Google Scholar 

  • De Genst E, Areskoug D, Decanniere K, Muyldermans S, Andersson K. (2002). Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design. J Biol Chem, 277, 29897-29907.

    Google Scholar 

  • De Rienzo F, Gabdoulline R, Menziani MC, Wade R. (2000). Blue copper proteins: a comparative analysis of their molecular interaction properties. Protein Science, 9, 1439-1454.

    Google Scholar 

  • Dell’Orco D. (2009). Fast predictions of thermodynamics and kinetics of protein–protein recognition from structures: from molecular design to systems biology. Mol Biosyst, 5, 323-334.

    Google Scholar 

  • Dell’Orco D, De Benedetti PG. (2008). Quantitative structure–activity relationship analysis of canonical inhibitors of serine proteases. Journal of Computer-Aided Molecular Design, 22, 469-478.

    Google Scholar 

  • Dell’Orco D, Xue W-F, Thulin E, Linse S. (2005). Electrostatic contributions to the kinetics and thermodynamics of protein assembly. Biophysical journal, 88, 1991-2002.

    Google Scholar 

  • Dell’Orco D, De Benedetti P, Fanelli F. (2006). From computational biophysics to systems biology workshop. NIC series, 67.

    Google Scholar 

  • Dell’Orco D, Casciari D, Fanelli F. (2008). Quaternary structure predictions and estimation of mutational effects on the free energy of dimerization of the OMPLA protein. Journal of structural biology, 163, 155-162.

    Google Scholar 

  • Dell'Orco D, Seeber M, De Benedetti PG, Fanelli F. (2005). Probing fragment complementation by rigid-body docking: in silico reconstitution of calbindin D9k. Journal of chemical information and modeling, 45, 1429-1438.

    Google Scholar 

  • Dell'Orco D, De Benedetti PG, Fanelli F. (2007). In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach. BMC structural biology, 7, 37.

    Google Scholar 

  • Deng N, Tse C, Wickstrom L, Kvaratskhelia M, Gallicchio E, Levy R. (2020). Exploring the Free Energy Landscape and Thermodynamics of Protein-Protein AssociationAssociation: HIV-1 Integrase Multimerization Induced by an Allosteric Inhibitor. BioRxiv.

    Google Scholar 

  • Doyle ML, Louie G, Dal Monte PR, Sokoloski TD (1995) [8] Tight binding affinities determined from thermodynamic linkage to protons by titration calorimetry. In: Methods in enzymology, vol 259. Elsevier, pp 183-194

    Google Scholar 

  • Elcock AH, Gabdoulline RR, Wade RC, McCammon JA. (1999). Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. Journal of molecular biology, 291, 149-162.

    Google Scholar 

  • Elcock AH, Sept D, McCammon JA (2001) Computer simulation of protein− protein interactions. ACS Publications,

    Google Scholar 

  • Ellis RJ. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Current opinion in structural biology, 11, 114-119.

    Google Scholar 

  • Estrada S, Pavlova A, Bjork I. (1999). The contribution of N-terminal region residues of cystatin A (stefin A) to the affinity and kinetics of inhibition of papain, cathepsin B, and cathepsin L. Biochemistry, 38, 7339-7345.

    Google Scholar 

  • Estrada S, Olson ST, Raub-Segall E, Bjork I. (2000). The N-terminal region of cystatin A (stefin A) binds to papain subsequent to the two hairpin loops of the inhibitor. Demonstration of two-step binding by rapid-kinetic studies of cystatin A labeled at the N-terminus with a fluorescent reporter group. Protein Science, 9, 2218-2224.

    Google Scholar 

  • Finger C, Volkmer T, Prodöhl A, Otzen DE, Engelman DM, Schneider D. (2006). The stability of transmembrane helix interactions measured in a biological membrane. Journal of molecular biology, 358, 1221-1228.

    Google Scholar 

  • Fisher HF, Singh N (1995) [9] Calorimetric methods for interpreting protein—Ligand interactions. In: Methods in enzymology, vol 259. Elsevier, pp 194-221

    Google Scholar 

  • Foote J, Eisen HN. (1995). Kinetic and affinity limits on antibodies produced during immune responses. Proceedings of the National Academy of Sciences of the United States of America, 92, 1254-1256.

    Google Scholar 

  • Frankel AD, Chen L, Cotter RJ, Pabo CO. (1988). Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. Proceedings of the National Academy of Sciences of the United States of America, 85, 6297-6300.

    Google Scholar 

  • Fredericks J, Hamilton AJ. (1996). Comprehensive Supramolecular Chemistry. 9, 565.

    Google Scholar 

  • Freyhult EK, Andersson K, Gustafsson MG. (2003). Structural modeling extends QSAR analysis of antibody-lysozyme interactions to 3D-QSAR. Biophysical journal, 84, 2264-2272.

    Google Scholar 

  • Frisch C, Fersht AR, Schreiber G. (2001). Experimental assignment of the structure of the transition state for the association of barnase and barstar. Journal of molecular biology, 308, 69-77.

    Google Scholar 

  • Gabdoulline RR, Wade RC. (2001). Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. Journal of molecular biology, 306, 1139-1155.

    Google Scholar 

  • Gabdoulline RR, Kummer U, Olsen LF, Wade RC. (2003). Concerted simulations reveal how peroxidase compound III formation results in cellular oscillations. Biophysical journal, 85, 1421-1428.

    Google Scholar 

  • Gabdoulline RR, Stein M, Wade RC. (2007). qPIPSA: relating enzymatic kinetic parameters and interaction fields. BMC bioinformatics, 8, 373.

    Google Scholar 

  • Gómez J, Freire EJ. (1995). Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. Journal of molecular biology, 252, 337-350.

    Google Scholar 

  • Guerois R, Nielsen JE, Serrano L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of molecular biology, 320, 369-387.

    Google Scholar 

  • Guinto ER, DiCera E. (1996). Large heat capacity change in a protein-monovalent cation interaction. Biochemistry, 35, 8800-8804.

    Google Scholar 

  • Hawkins RE, Russell SJ, Baier M, Winter G. (1993). The contribution of contact and non-contact residues of antibody in the affinity of binding to antigen: the interaction of mutant D1. 3 antibodies with lysozyme. Journal of molecular biology.

    Google Scholar 

  • Hénin J, Pohorille A, Chipot C. (2005). Insights into the recognition and association of transmembrane α-helices. The free energy of α-helix dimerization in glycophorin A. Journal of the American Chemical Society, 127, 8478-8484.

    Google Scholar 

  • Henriques DA, Ladbury JE, Jackson RM. (2000). Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization. Protein Science, 9, 1975-1985.

    Google Scholar 

  • Hibbits KA, Gill DS, Willson RC. (1994). Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. Biochemistry, 33, 3584-3590.

    Google Scholar 

  • Hopkins PC, Pike RN, Stone SR. (2000). Evolution of serpin specificity: cooperative interactions in the reactive-site loop sequence of antithrombin specifically restrict the inhibition of activated protein C. Journal of molecular evolution, 51, 507-515.

    Google Scholar 

  • Horton N, Lewis M. (1992). Calculation of the free energy of association for protein complexes. Protein science : a publication of the Protein Society, 1, 169-181.

    Google Scholar 

  • Ito W, Iba Y, Kurosawa Y. (1993). Effects of Substitutions of Closely-Related Amino-Acids at the Contact Surface in an Antigen-Antibody Complex on Thermodynamic Parameters. J Biol Chem, 268, 16639-16647.

    Google Scholar 

  • Jaiswal N et al. (2019). Molecular interaction between human SUMO-I and histone like DNA binding protein of Helicobacter pylori (Hup) investigated by NMR and other biophysical tools. International journal of biological macromolecules, 123, 446-456.

    Google Scholar 

  • Jayashree S, Murugavel P, Sowdhamini R, Srinivasan N. (2019). Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Biology direct, 14, 1-14.

    Google Scholar 

  • Jelesarov I, Bosshard HR. (1996). Thermodynamic characterization of the coupled folding and association of heterodimeric coiled coils (leucine zippers). Journal of molecular biology, 263, 344-358.

    Google Scholar 

  • Jemimah S, Gromiha MM. (2020). Insights into changes in binding affinity caused by disease mutations in protein-protein complexes. Computers in Biology and Medicine, 123, 103829.

    Google Scholar 

  • Jemimah S, Sekijima M, Gromiha MM. (2020). ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein–protein complexes upon mutation using functional classification. Bioinformatics, 36, 1725-1730.

    Google Scholar 

  • Jin L, Fendly BM, Wells JA. (1992). High resolution functional analysis of antibody-antigen interactions. Journal of molecular biology, 226, 851-865.

    Google Scholar 

  • Jones DH, McMillan AJ, Fersht AR, Winter G. (1985). Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface. Biochemistry, 24, 5852-5857.

    Google Scholar 

  • Kam-Morgan LN, Smith-Gill SJ, Taylor MG, Zhang L, Wilson AC, Kirsch JF. (1993). High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 90, 3958-3962.

    Google Scholar 

  • Kelley RF, O'Connell MP. (1993). Thermodynamic analysis of an antibody functional epitope. Biochemistry, 32, 6828-6835.

    Google Scholar 

  • Kelley RF et al. (1992). Antigen binding thermodynamics and antiproliferative effects of chimeric and humanized anti-p185HER2 antibody Fab fragments. Biochemistry, 31, 5434-5441.

    Google Scholar 

  • Keskin O, Gursoy A, Ma B, Nussinov RJ. (2008). Principles of protein− protein interactions: What are the preferred ways for proteins to interact? Chem Rev, 108, 1225-1244.

    Google Scholar 

  • Kiel C, Selzer T, Shaul Y, Schreiber G, Herrmann C. (2004). Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proceedings of the National Academy of Sciences of the United States of America, 101, 9223-9228.

    Google Scholar 

  • Kiel C, Foglierini M, Kuemmerer N, Beltrao P, Serrano L. (2007). A genome-wide Ras-effector interaction network. Journal of molecular biology, 370, 1020-1032.

    Google Scholar 

  • Kortemme T, Baker D. (2002). A simple physical model for binding energy hot spots in protein-protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 99, 14116-14121.

    Google Scholar 

  • Kramers HA. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7, 284-304.

    Google Scholar 

  • Kresheck GC, Vitello LB, Erman JE. (1995). Calorimetric studies on the interaction of horse ferricytochrome c and yeast cytochrome c peroxidase. Biochemistry, 34, 8398-8405.

    Google Scholar 

  • Krueger S, Gregurick SK, Zondlo J, Eisenstein E. (2003). Interaction of GroEL and GroEL/GroES complexes with a nonnative subtilisin variant: a small-angle neutron scattering study. Journal of structural biology, 141, 240-258.

    Google Scholar 

  • Ladbury JE, Chowdhry BZ. (1996). Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chemistry & biology, 3, 791-801.

    Google Scholar 

  • Lavigne P, Bagu JR, Boyko R, Willard L, Holmes CFB, Sykes BD. (2000). Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. Protein Science, 9, 252-264.

    Google Scholar 

  • Leder L, Berger C, Bornhauser S, Wendt H, Ackermann F, Jelesarov I, Bosshard HR. (1995). Spectroscopic, calorimetric, and kinetic demonstration of conformational adaptation in peptide-antibody recognition. Biochemistry, 34, 16509-16518.

    Google Scholar 

  • Lee EH, Soper TS, Mural RJ, Stringer CD, Hartman FC. (1987). An Intersubunit Interaction at the Active-Site of D-Ribulose-1,5-Bisphosphate Carboxylase Oxygenase as Revealed by Cross-Linking and Site-Directed Mutagenesis. Biochemistry, 26, 4599-4604.

    Google Scholar 

  • Lee FS, Auld DS, Vallee BL. (1989). Tryptophan Fluorescence as a Probe of Placental Ribonuclease Inhibitor Binding to Angiogenin. Biochemistry, 28, 219-224.

    Google Scholar 

  • Leistler B, Perham RN. (1994). Solubilizing buried domains of proteins: a self-assembling interface domain from glutathione reductase. Biochemistry, 33, 2773-2781.

    Google Scholar 

  • Li YL, Lipschultz CA, Mohan S, Smith-Gill SJ. (2001). Mutations of an epitope hot-spot residue alter rate limiting steps of antigen-antibody protein-protein associations. Biochemistry, 40, 2011-2022.

    Google Scholar 

  • Li L, Zhao B, Cui Z, Gan J, Sakharkar MK, Kangueane P. (2006). Identification of hot spot residues at protein-protein interface. J Bioinformation, 1, 121.

    Google Scholar 

  • Li M, Petukh M, Alexov E, Panchenko AR. (2014). Predicting the impact of missense mutations on protein–protein binding affinity. Journal of chemical theory and computation, 10, 1770-1780.

    Google Scholar 

  • Liu Y, Sturtevant JM. (1995). Significant discrepancies between van't Hoff and calorimetric enthalpies. II. Protein Science, 4, 2559-2561.

    Google Scholar 

  • Luque I, Gomez J, Semo N, Freire E. (1998). Structure-based thermodynamic design of peptide ligands: Application to peptide inhibitors of the aspartic protease endothiapepsin. Proteins-Structure Function and Genetics, 30, 74-85.

    Google Scholar 

  • Luthy JA, Praissman M, Finkenstadt WR, Laskowski M. (1973). Detailed mechanism of interaction of bovine β-Trypsin with soybean trypsin inhibitor (Kunitz) I. Stopped flow measurements. J Biol Chem, 248, 1760-1771.

    Google Scholar 

  • Mainfroid V et al. (1996). Three hTIM mutants that provide new insights on why TIM is a dimer. Journal of molecular biology, 257, 441-456.

    Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. In: Advances in protein chemistry, vol 47. Elsevier, pp 307-425

    Google Scholar 

  • Martinez JC, Filimonov VV, Mateo PL, Schreiber G, Fersht AR. (1995). A calorimetric study of the thermal stability of barstar and its interaction with barnase. Biochemistry, 34, 5224-5233.

    Google Scholar 

  • McLane KE, Wu X, Conti-Tronconi BM. (1991). Amino acid residues forming the interface of a neuronal nicotinic acetylcholine receptor with κ-bungarotoxin: A study using single residue substituted peptide analogs. Biochemical and biophysical research communications, 176, 11-17.

    Google Scholar 

  • Meenan NA et al. (2010). The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 107, 10080-10085.

    Google Scholar 

  • Méjean A, Bodenreider C, Schuerer K, Goldberg ME. (2001). Kinetic characterization of the pH-dependent oligomerization of R67 dihydrofolate reductase. Biochemistry, 40, 8169-8179.

    Google Scholar 

  • Milos M, Schaer JJ, Comte M, Cox JA. (1988). Microcalorimetric investigation of the interaction of calmodulin with seminalplasmin and myosin light chain kinase. J Biol Chem, 263, 9218-9222.

    Google Scholar 

  • Mossing MC, Sauer RT. (1990). Stable, Monomeric Variants of Lambda-Cro Obtained by Insertion of a Designed Beta-Hairpin Sequence. Science, 250, 1712-1715.

    Google Scholar 

  • Murphy KP. (1999). Predicting binding energetics from structure: looking beyond ΔG. Medicinal research reviews, 19, 333-339.

    Google Scholar 

  • Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. In: Advances in protein chemistry, vol 43. Elsevier, pp 313-361

    Google Scholar 

  • Murphy KP, Gill SJ. (1991). Solid model compounds and the thermodynamics of protein unfolding. Journal of molecular biology, 222, 699-709.

    Google Scholar 

  • Murphy KP, Xie D, Garcia KC, Amzel LM, Freire E. (1993). Structural energetics of peptide recognition: angiotensin II/antibody binding. Proteins, 15, 113-120.

    Google Scholar 

  • Murphy KP, Freire E, Paterson Y. (1995). Configurational Effects in Antibody-Antigen Interactions Studied by Microcalorimetry. Proteins-Structure Function and Bioinformatics, 21, 83-90.

    Google Scholar 

  • Myles T, Le Bonniec BF, Betz A, Stone SR. (2001). Electrostatic steering and ionic tethering in the formation of thrombin-hirudin complexes: The role of the thrombin anion-binding exosite-I. Biochemistry, 40, 4972-4979.

    Google Scholar 

  • Naghibi H, Tamura A, Sturtevant JM. (1995). Significant discrepancies between van't Hoff and calorimetric enthalpies. Proceedings of the National Academy of Sciences, 92, 5597-5599.

    Google Scholar 

  • Pearce KH, Jr., Cunningham BC, Fuh G, Teeri T, Wells JA. (1999). Growth hormone binding affinity for its receptor surpasses the requirements for cellular activity. Biochemistry, 38, 81-89.

    Google Scholar 

  • Pearce KH, Ultsch MH, Kelley RF, deVos AM, Wells JA. (1996). Structural and mutational analysis of affinity-inert contact residues at the growth hormone-receptor interface. Biochemistry, 35, 10300-10307.

    Google Scholar 

  • Petrella EC, Machesky LM, Kaiser DA, Pollard TD. (1996). Structural requirements and thermodynamics of the interaction of proline peptides with profilin. Biochemistry, 35, 16535-16543.

    Google Scholar 

  • Piehler J, Schreiber G. (1999). Biophysical analysis of the interaction of human ifnar2 expressed in E. coli with IFNα2. Journal of molecular biology, 289, 57-67.

    Google Scholar 

  • Piehler J, Roisman LC, Schreiber G. (2000). New structural and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface. J Biol Chem, 275, 40425-40433.

    Google Scholar 

  • Privalov PL, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. In: Advances in protein chemistry, vol 39. Elsevier, pp 191-234

    Google Scholar 

  • Radić Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P. (1997). Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase distinctions between active center ligands and fasciculin. J Biol Chem, 272, 23265-23277.

    Google Scholar 

  • Rajpal A, Taylor MG, Kirsch JF. (1998). Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: Free energies and kinetics. Protein Science, 7, 1868-1874.

    Google Scholar 

  • Raman CS, Jemmerson R, Nall BT, Allen MJ. (1992). Diffusion-limited rates for monoclonal antibody binding to cytochrome c. Biochemistry, 31, 10370-10379.

    Google Scholar 

  • Raman CS, Allen MJ, Nall BT. (1995). Enthalpy of antibody--cytochrome c binding. Biochemistry, 34, 5831-5838.

    Google Scholar 

  • Richter S, Wenzel A, Stein M, Gabdoulline RR, Wade RC. (2008). webPIPSA: a web server for the comparison of protein interaction properties. Nucleic acids research, 36, W276-W280.

    Google Scholar 

  • Roberts S, Cheetham JC, Rees AR. (1987). Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature, 328, 731-734.

    Google Scholar 

  • Schramm HJ, Billich A, Jaeger E, Rucknagel KP, Arnold G, Schramm W. (1993). The inhibition of HIV-1 protease by interface peptides. Biochemical and biophysical research communications, 194, 595-600.

    Google Scholar 

  • Schreiber G. (2002). Kinetic studies of protein-protein interactions. Current opinion in structural biology, 12, 41-47.

    Google Scholar 

  • Schreiber G, Fersht AR. (1995). Energetics of protein-protein interactions: Analysis ofthe Barnase-Barstar interface by single mutations and double mutant cycles. Journal of molecular biology, 248, 478-486.

    Google Scholar 

  • Schreiber G, Fersht AR. (1996). Rapid, electrostatically assisted association of proteins. Nature structural biology, 3, 427-431.

    Google Scholar 

  • Schreiber G, Buckle A, Fersht A. (1994). Stability versus function: two competing forces in the evolution of barstar. J Structure, 2, 945-951.

    Google Scholar 

  • Schwarz FP, Tello D, Goldbaum FA, Mariuzza RA, Poljak RJ. (1995). Thermodynamics of antigen-antibody binding using specific anti-lysozyme antibodies. European Journal of Biochemistry, 228, 388-394.

    Google Scholar 

  • Selzer T, Schreiber G. (1999). Predicting the rate enhancement of protein complex formation from the electrostatic energy of interaction. Journal of molecular biology, 287, 409-419.

    Google Scholar 

  • Selzer T, Schreiber G. (2001). New insights into the mechanism of protein-protein association. Proteins-Structure Function and Bioinformatics, 45, 190-198.

    Google Scholar 

  • Selzer T, Albeck S, Schreiber G. (2000). Rational design of faster associating and tighter binding protein complexes. Nature structural biology, 7, 537-541.

    Google Scholar 

  • Sheinerman FB, Norel R, Honig B. (2000). Electrostatic aspects of protein-protein interactions. Current opinion in structural biology, 10, 153-159.

    Google Scholar 

  • Shih AJ, Purvis J, Radhakrishnan R. (2008). Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing. Mol Biosyst, 4, 1151-1159.

    Google Scholar 

  • Spolar RS, Livingstone JR, Record MT. (1992). Use of Liquid-Hydrocarbon and Amide Transfer Data to Estimate Contributions to Thermodynamic Functions of Protein Folding from the Removal of Nonpolar and Polar Surface from Water. Biochemistry, 31, 3947-3955.

    Google Scholar 

  • Stebbins JW, Kantrowitz E. (1989). The importance of the link between Glu204 of the catalytic chain and Arg130 of the regulatory chain for the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. J Biol Chem, 264, 14860-14864.

    Google Scholar 

  • Stein M, Gabdoulline RR, Wade RC. (2007). Bridging from molecular simulation to biochemical networks. Current opinion in structural biology, 17, 166-172.

    Google Scholar 

  • Stites WE. (1997). Protein-protein interactions: Interface structure, binding thermodynamics, and mutational analysis. Chem Rev, 97, 1233-1250.

    Google Scholar 

  • Stone SR, Hermans JM. (1995). Inhibitory mechanism of serpins. Interaction of thrombin with antithrombin and protease nexin 1. Biochemistry, 34, 5164-5172.

    Google Scholar 

  • Stone SR, Dennis S, Hofsteenge J. (1989). Quantitative evaluation of the contribution of ionic interactions to the formation of the thrombin-hirudin complex. Biochemistry, 28, 6857-6863.

    Google Scholar 

  • Sturtevant JM. (1977). Heat capacity and entropy changes in processes involving proteins. Proceedings of the National Academy of Sciences of the United States of America, 74, 2236-2240.

    Google Scholar 

  • Sydor JR, Engelhard M, Wittinghofer A, Goody RS, Herrmann C. (1998). Transient kinetic studies on the interaction of Ras and the Ras-binding domain of c-Raf-1 reveal rapid equilibration of the complex. Biochemistry, 37, 14292-14299.

    Google Scholar 

  • Taylor MG, Rajpal A, Kirsch JF. (1998). Kinetic epitope mapping of the chicken lysozyme center dot HyHEL-10 Fab complex: Delineation of docking trajectories. Protein Science, 7, 1857-1867.

    Google Scholar 

  • Tayyari F. (2013). Development Of Isotags For Nmr Based Metabolite Profiling And Applications.

    Google Scholar 

  • Tello D, Goldbaum FA, Mariuzza RA, Ysern X, Schwarz FP, Poljak RJ (1993) Three-dimensional structure and thermodynamics of antigen binding by anti-lysozyme antibodies. Portland Press Ltd.,

    Google Scholar 

  • Tello D, Eisenstein E, Schwarz FP, Goldbaum FA, Fields BA, Mariuzza RA, Poljak RJ. (1994). Structural and physicochemical analysis of the reaction between the anti-lysozyme antibody D1. 3 and the anti-idiotopic antibodies E225 and E5. 2. Journal of Molecular Recognition, 7, 57-62.

    Google Scholar 

  • Tomić S, Bertoša B, Wang T, Wade RC. (2007). COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins: Structure, Function, and Bioinformatics, 67, 435-447.

    Google Scholar 

  • Tse C, Wickstrom L, Kvaratskhelia M, Gallicchio E, Levy R, Deng N. (2020). Exploring the free-energy landscape and thermodynamics of protein-protein association. Biophysical journal, 119, 1226-1238.

    Google Scholar 

  • Varadarajan R, Connelly PR, Sturtevant JM, Richards FM. (1992). Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry, 31, 1421-1426.

    Google Scholar 

  • Vijayakumar M, Wong KY, Schreiber G, Fersht AR, Szabo A, Zhou HX. (1998). Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. Journal of molecular biology, 278, 1015-1024.

    Google Scholar 

  • Wallis R, Moore GR, James R, Kleanthous C. (1995). Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry, 34, 13743-13750.

    Google Scholar 

  • Wang T, Wade RC. (2002). Comparative binding energy (COMBINE) analysis of OppA-peptide complexes to relate structure to binding thermodynamics. J Med Chem, 45, 4828-4837.

    Google Scholar 

  • Wang Y, Shen B-J, Sebald W. (1997). A mixed-charge pair in human interleukin 4 dominates high-affinity interaction with the receptor α chain. Proceedings of the National Academy of Sciences, 94, 1657-1662.

    Google Scholar 

  • Wang W, Xu W-X, Levy Y, Trizac E, Wolynes P. (2009). Confinement effects on the kinetics and thermodynamics of protein dimerization. Proceedings of the National Academy of Sciences, 106, 5517-5522.

    Google Scholar 

  • Ward WH, Jones DH, Fersht AR. (1987). Effects of engineering complementary charged residues into the hydrophobic subunit interface of tyrosyl-tRNA synthetase. Biochemistry, 26, 4131-4138.

    Google Scholar 

  • Weber G. (1993). Thermodynamics of the Association and the Pressure Dissociation of Oligomeric Proteins. J Phys Chem-Us, 97, 7108-7115.

    Google Scholar 

  • Weber G. (1995). van't Hoff revisited: enthalpy of association of protein subunits. The Journal of Physical Chemistry B, 99, 1052-1059.

    Google Scholar 

  • Weber G. (1996). Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 93, 7452-7453.

    Google Scholar 

  • Weinkam P, Chen YC, Pons J, Sali A. (2013). Impact of mutations on the allosteric conformational equilibrium. Journal of molecular biology, 425, 647-661.

    Google Scholar 

  • Wells JA (1991) [18] Systematic mutational analyses of protein-protein interfaces. In: Methods in enzymology, vol 202. Elsevier, pp 390-411

    Google Scholar 

  • Wells JA, de Vos AM. (1996). Hematopoietic receptor complexes. Annual review of biochemistry, 65, 609-634.

    Google Scholar 

  • Wiseman T, Williston S, Brandts JF, Lin LN. (1989). Rapid Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter. Anal Biochem, 179, 131-137.

    Google Scholar 

  • Xavier KA, Willson RC. (1998). Association and dissociation kinetics of anti-hen egg lysozyme monoclonal antibodies HyHEL-5 and HyHEL-10. Biophysical journal, 74, 2036-2045.

    Google Scholar 

  • Xavier KA, McDonald SM, McCammon JA, Willson RC. (1999). Association and dissociation kinetics of bobwhite quail lysozyme with monoclonal antibody HyHEL-5. Protein engineering, 12, 79-83.

    Google Scholar 

  • Yakovlev GI et al. (1995). Dissociation constants and thermal stability of complexes of Bacillus intermedius RNase and the protein inhibitor of Bacillus amyloliquefaciens RNase. FEBS letters, 366, 156-158.

    Google Scholar 

  • Zhang C, Liu S, Zhu QQ, Zhou YQ. (2005). A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem, 48, 2325-2335.

    Google Scholar 

  • Zhou HX. (2003). Association and dissociation kinetics of colicin E3 and immunity protein 3: convergence of theory and experiment. Protein science : a publication of the Protein Society, 12, 2379-2382.

    Google Scholar 

  • Zhou H, Zhang C, Liu S, Zhou Y. (2005). Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations. Nucleic acids research, 33, W193-197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poluri, K.M., Gulati, K., Sarkar, S. (2021). Energetic Aspects of Protein–Protein Interactions (PPIs). In: Protein-Protein Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-16-1594-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1594-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1593-1

  • Online ISBN: 978-981-16-1594-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics