Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine 100, 270–278 (2018)
CrossRef
Google Scholar
Ahmadi-Pajouh, M.A., Ala, T.S., Zamanian, F., Namazi, H., Jafari, S.: Fractal-based classification of human brain response to living and non-living visual stimuli. Fractals 26(05), 1850069 (2018)
CrossRef
Google Scholar
Cecotti, H.: A time-frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recognition Letters 32(8), 1145–1153 (2011)
CrossRef
Google Scholar
Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering 16(3), (2019)
CrossRef
Google Scholar
Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3), 551 (2019)
CrossRef
Google Scholar
Donmez, H., Ozkurt, N.: Emotion classification from eeg signals in convolutional neural networks. In, : Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE 2019, 1–6 (2019)
Google Scholar
Frantzidis, C.A., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE transactions on Information Technology in Biomedicine 14(3), 589–597 (2010)
CrossRef
Google Scholar
Ha, K.W., Jeong, J.W.: Motor imagery EEG classification using Capsule Networks. Sensors 19(13), 2854 (2019)
CrossRef
Google Scholar
Hasanpour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple, using simple architectures to outperform deeper and more complex architectures. arXiv preprint arXiv:1608.06037 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. (2016) 770–778
Google Scholar
Hussein, R., Palangi, H., Ward, R., Wang, Z.J.: Epileptic seizure detection: A deep learning approach. arXiv preprint arXiv:1803.09848 (2018)
Jiao, Z., You, H., Yang, F., Li, X., Zhang, H., Shen, D.: Decoding EEG by visual-guided deep neural networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1387–1393. AAAI Press (2019)
Google Scholar
Jiao, Z., Gao, X., Wang, Y., Li, J., Xu, H.: Deep convolutional neural networks for mental load classification based on EEG data. Pattern Recognition 76, 582–595 (2018)
CrossRef
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. (2012) 1097–1105
Google Scholar
Kwak, N.S., Müller, K.R., Lee, S.W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PloS one 12(2), (2017)
CrossRef
Google Scholar
Kwon, Y.H., Shin, S.B., Kim, S.D.: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors 18(5), 1383 (2018)
CrossRef
Google Scholar
Manor, R., Geva, A.B.: Convolutional neural network for multi-category rapid serial visual presentation BCI. Frontiers in Computational Neuroscience 9, 146 (2015)
CrossRef
Google Scholar
Mindbig dataset. http://www.mindbigdata.com/ (2018)
Nestor, A., Plaut, D.C., Behrmann, M.: Feature-based face representations and image reconstruction from behavioral and neural data. Proceedings of the National Academy of Sciences 113(2), 416–421 (2016)
CrossRef
Google Scholar
Niedermeyer, E., da Silva, F.L.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins (2005)
Google Scholar
Shamwell, J., Lee, H., Kwon, H., Marathe, A.R., Lawhern, V., Nothwang, W.: Single-trial EEG RSVP classification using convolutional neural networks. In: Micro-and Nanotechnology Sensors, Systems, and Applications VIII. Volume 9836., International Society for Optics and Photonics (2016) 983622
Google Scholar
Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in X-ray images. Medical Image Analysis 36, 41–51 (2017)
CrossRef
Google Scholar
Stewart, A.X., Nuthmann, A., Sanguinetti, G.: Single-trial classification of eeg in a visual object task using ica and machine learning. Journal of neuroscience methods 228, 1–14 (2014)
CrossRef
Google Scholar
Waytowich, N., Lawhern, V.J., Garcia, J.O., Cummings, J., Faller, J., Sajda, P., Vettel, J.M.: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. Journal of neural engineering 15(6), (2018)
CrossRef
Google Scholar
Yang, L., Chan, L.L.H., Lu, Y.: Decoding of visual-related information from the human eeg using an end-to-end deep learning approach. arXiv preprint arXiv:1911.00550 (2019)