Skip to main content

Convolutional Neural Network-Based Visually Evoked EEG Classification Model on MindBigData

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1355)

Abstract

Visual stimulus evoked potentials are neural oscillations acquired, from the brain’s electrical activity evoked, while seeing an image or video as stimuli. With the advancement of deep learning techniques, decoding visual stimuli evoked EEG (ElectroEncephaloGram) signals has become a versatile study of neuroscience and computer vision alike. Deep learning techniques have capability to learn problem specific features automatically, which eliminates the traditional feature extraction procedure. In this proposed work, convolutional neural network (CNN) based classification model is used to classify visual stimuli evoked EEG signals while seeing a 10-class (i.e., 0–9 digit’s images) MindBig dataset without the need of an additional feature extraction step. The raw EEG signal is converted to spectrogram images as CNN is known to work finely with images. Three pretrained CNN-based model AlexNet, VGGNet, and ResNet have been trained to decide the ideal parameters and structure of the proposed CNN-based model. The architecture of proposed CNN model comprises 4 convolutional layers, a max pooling layer and a fully connected layer which take spectrogram images as input and classify EEG signals evoked from 10-class digit images. The overall average accuracy 91.29% is achieved which outperforms the pretrained CNN models.

Keywords

  • ElectroEncephaloGram
  • Visual stimuli
  • Convolutional neural network
  • MindBigData
  • Spectrogram

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-1543-6_22
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-1543-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine 100, 270–278 (2018)

    CrossRef  Google Scholar 

  2. Ahmadi-Pajouh, M.A., Ala, T.S., Zamanian, F., Namazi, H., Jafari, S.: Fractal-based classification of human brain response to living and non-living visual stimuli. Fractals 26(05), 1850069 (2018)

    CrossRef  Google Scholar 

  3. Cecotti, H.: A time-frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recognition Letters 32(8), 1145–1153 (2011)

    CrossRef  Google Scholar 

  4. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering 16(3), (2019)

    CrossRef  Google Scholar 

  5. Dai, M., Zheng, D., Na, R., Wang, S., Zhang, S.: EEG classification of motor imagery using a novel deep learning framework. Sensors 19(3), 551 (2019)

    CrossRef  Google Scholar 

  6. Donmez, H., Ozkurt, N.: Emotion classification from eeg signals in convolutional neural networks. In, : Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE 2019, 1–6 (2019)

    Google Scholar 

  7. Frantzidis, C.A., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE transactions on Information Technology in Biomedicine 14(3), 589–597 (2010)

    CrossRef  Google Scholar 

  8. Ha, K.W., Jeong, J.W.: Motor imagery EEG classification using Capsule Networks. Sensors 19(13), 2854 (2019)

    CrossRef  Google Scholar 

  9. Hasanpour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple, using simple architectures to outperform deeper and more complex architectures. arXiv preprint arXiv:1608.06037 (2016)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. (2016) 770–778

    Google Scholar 

  11. Hussein, R., Palangi, H., Ward, R., Wang, Z.J.: Epileptic seizure detection: A deep learning approach. arXiv preprint arXiv:1803.09848 (2018)

  12. Jiao, Z., You, H., Yang, F., Li, X., Zhang, H., Shen, D.: Decoding EEG by visual-guided deep neural networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1387–1393. AAAI Press (2019)

    Google Scholar 

  13. Jiao, Z., Gao, X., Wang, Y., Li, J., Xu, H.: Deep convolutional neural networks for mental load classification based on EEG data. Pattern Recognition 76, 582–595 (2018)

    CrossRef  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. (2012) 1097–1105

    Google Scholar 

  15. Kwak, N.S., Müller, K.R., Lee, S.W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PloS one 12(2), (2017)

    CrossRef  Google Scholar 

  16. Kwon, Y.H., Shin, S.B., Kim, S.D.: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors 18(5), 1383 (2018)

    CrossRef  Google Scholar 

  17. Manor, R., Geva, A.B.: Convolutional neural network for multi-category rapid serial visual presentation BCI. Frontiers in Computational Neuroscience 9, 146 (2015)

    CrossRef  Google Scholar 

  18. Mindbig dataset. http://www.mindbigdata.com/ (2018)

  19. Nestor, A., Plaut, D.C., Behrmann, M.: Feature-based face representations and image reconstruction from behavioral and neural data. Proceedings of the National Academy of Sciences 113(2), 416–421 (2016)

    CrossRef  Google Scholar 

  20. Niedermeyer, E., da Silva, F.L.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins (2005)

    Google Scholar 

  21. Shamwell, J., Lee, H., Kwon, H., Marathe, A.R., Lawhern, V., Nothwang, W.: Single-trial EEG RSVP classification using convolutional neural networks. In: Micro-and Nanotechnology Sensors, Systems, and Applications VIII. Volume 9836., International Society for Optics and Photonics (2016) 983622

    Google Scholar 

  22. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in X-ray images. Medical Image Analysis 36, 41–51 (2017)

    CrossRef  Google Scholar 

  23. Stewart, A.X., Nuthmann, A., Sanguinetti, G.: Single-trial classification of eeg in a visual object task using ica and machine learning. Journal of neuroscience methods 228, 1–14 (2014)

    CrossRef  Google Scholar 

  24. Waytowich, N., Lawhern, V.J., Garcia, J.O., Cummings, J., Faller, J., Sajda, P., Vettel, J.M.: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials. Journal of neural engineering 15(6), (2018)

    CrossRef  Google Scholar 

  25. Yang, L., Chan, L.L.H., Lu, Y.: Decoding of visual-related information from the human eeg using an end-to-end deep learning approach. arXiv preprint arXiv:1911.00550 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kumari, N., Anwar, S., Bhattacharjee, V. (2021). Convolutional Neural Network-Based Visually Evoked EEG Classification Model on MindBigData. In: Pan, I., Mukherjee, A., Piuri, V. (eds) Proceedings of Research and Applications in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 1355. Springer, Singapore. https://doi.org/10.1007/978-981-16-1543-6_22

Download citation