Skip to main content

Pollutant Control by Catalytic Methods

  • Chapter
  • First Online:
Multi-Pollutant Control for Flue Gases

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC,volume 63))

  • 305 Accesses

Abstract

Catalysis is an effective and economical approach to reduce air pollutants and the development of high-performance catalysts is a critical factor in the employment of catalytic pollutant control technology. Considerable efforts have been made to develop catalytic technologies capable of reducing pollutants in flue gas with NH3-SCR being successfully industrialized for NOx abatement since the late 1970s. However, flue gas pollutants vary by fuel and can include varying concentrations of NOx, SOx, VOCs, and heavy metals. When combined with the varying temperature of flue gas and the source of pollutants, the effective removal of pollutants becomes challenging. Additional requirements have thus been suggested for the catalytic technology to efficiently remove multiple pollutants. In this chapter, the basic principles of SCR are first introduced. Some critical issues in SCR development, including the design of poison-resistant catalysts, catalysts exhibiting a wide working temperature window or low-sulfur conversion, and the industrial preparation and regeneration of deactivated catalysts, are then discussed in detail. Finally, research on and applications of simultaneous multi-pollutant catalytic treatments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busca G, Lietti L, Ramis G et al (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18(1):1–36

    Article  Google Scholar 

  2. Madia G, Koebel M, Elsener M et al (2002) Side reactions in the selective catalytic reduction of NOx with various NO2 fractions. Ind Eng Chem Res 41(16):4008–4015

    Article  Google Scholar 

  3. Yates M, Martín JA, Martín-Luengo MÁ et al (2005) N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts. Catal Today 107–108:120–125

    Article  Google Scholar 

  4. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123

    Article  Google Scholar 

  5. Giraud F, Couble J, Geantet C et al (2018) Experimental microkinetic approach of De-NOx by NH3 on V2O5/WO3/TiO2 catalysts. 5. Impacts of the NH3-H2O coadsorption on the coverage of sulfated TiO2-based solids. J Phys Chem C 122(43):24619–24633

    Google Scholar 

  6. Roduit B, Wokaun A, Baiker A (1998) Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over vanadia/Titania-Based catalysts. Ind Eng Chem Res 37(12):4577–4590

    Article  Google Scholar 

  7. Han LP, Cai SX, Gao M et al (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119(19):10916–10976

    Article  Google Scholar 

  8. Anstrom M, Topsøe N-Y, Dumesic JA (2003) Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J Catal 213(2):115–125

    Article  Google Scholar 

  9. Topsøe N-Y (1994) Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science 265(5176):1217–1219

    Article  Google Scholar 

  10. Du X, Gao X, Hu W et al (2014) Catalyst design based on DFT calculations: metal oxide catalysts for gas phase no reduction. J Phys Chem C 118(25):13617–13622

    Article  Google Scholar 

  11. Topsoe NY, Dumesic JA, Topsoe H (1995) Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: I.I. Studies of active sites and formulation of catalytic cycles. J Catal 151 (1):241–252

    Google Scholar 

  12. Qu R, Gao X, Cen K et al (2013) Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Appl Catal B 142–143:290–297

    Article  Google Scholar 

  13. Qu R, Peng Y, Sun X et al (2016) Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH3 over cerium-niobium oxide catalysts. Catal Sci Technol 6(7):2136–2142

    Article  Google Scholar 

  14. Liu F, He H, Zhang C et al (2011) Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catal Today 175(1):18–25

    Article  Google Scholar 

  15. Ciardelli C, Nova I, Tronconi E et al (2004) A “nitrate route” for the low temperature “Fast SCR” reaction over a V2O5-WO3/TiO2 commercial catalyst. Chem Commun 23:2718–2719

    Article  Google Scholar 

  16. Forzatti P, Nova I, Tronconi E (2009) Enhanced NH3 selective catalytic reduction for NOx abatement. Angewandte chemie 121(44):8516–8518

    Article  Google Scholar 

  17. Hu W, Zou R, Dong Y et al (2020) Synergy of vanadia and ceria in the reaction mechanism of low-temperature selective catalytic reduction of NOx by NH3. J Catal 391:145–154

    Article  Google Scholar 

  18. Du XS, Gao X, Qiu KZ et al (2015) The reaction of poisonous alkali oxides with vanadia SCR catalyst and the afterward influence: a DFT and experimental study. J Phys Chem C 119(4):1905–1912

    Article  Google Scholar 

  19. Du XS, Yang GP, Chen YR et al (2017) The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst. Appl Surf Sci 392:162–168

    Article  Google Scholar 

  20. Peña DA, Uphade BS, Smirniotis PG (2004) TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J Catal 221(2):421–431

    Google Scholar 

  21. Guo RT, Wang QS, Pan WG et al (2014) The poisoning effect of Na and K on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3: a comparative study. Appl Surf Sci 317:111–116

    Article  Google Scholar 

  22. Du XS, Gao X, Qu R et al (2012) The influence of alkali metals on the Ce-Ti mixed oxide catalyst for the selective catalytic reduction of NOx. ChemCatChem 4(12):2075–2081

    Article  Google Scholar 

  23. Zhou A, Yu D, Yang L et al (2016) Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping. Appl Surf Sci 378:167–173

    Article  Google Scholar 

  24. Boxiong S, Yan Y, Shen BX, Yao Y, Chen JH et al (2013) Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3. Microporous Mesoporous Mater 180:262–269

    Google Scholar 

  25. Shen BX, Deng LD, Chen JH (2013) Effect of K and Ca on catalytic activity of Mn-CeOx/Ti-PILC. Front Environ Sci Eng 7(4):512–517

    Article  Google Scholar 

  26. Du XS, Tang JY, Gao X et al (2016) Molecular transformations of arsenic species in the flue gas of typical power plants: a density functional theory study. Energy Fuels 30(5):4209–4214

    Article  Google Scholar 

  27. Hu W, Gao X, Deng Y et al (2016) Deactivation mechanism of arsenic and resistance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3. Chem Eng J 293:118–128

    Article  Google Scholar 

  28. Gao X, Du X-s, Fu Y-c et al (2011) Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides. Catal Today 175(1):625–630

    Article  Google Scholar 

  29. Jiang Y, Gao X, Zhang YX et al (2014) Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J Hazard Mater 274:270–278

    Article  Google Scholar 

  30. Zhang S, Liu SJ, Hu WS et al (2019) New insight into alkali resistance and low temperature activation on vanadia-titania catalysts for selective catalytic reduction of NO. Appl Surf Sci 466:99–109

    Article  Google Scholar 

  31. Du X, Gao X, Fu Y et al (2012) The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst. J Colloid Interface Sci 368(1):406–412

    Article  Google Scholar 

  32. Peng Y, Li J, Si W et al (2015) Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: An experimental and DFT study. Chem Eng J 269:44–50

    Article  Google Scholar 

  33. Du XS, Wang XM, Chen YR et al (2016) Supported metal sulfates on Ce-TiOx as catalysts for NH3-SCR of NO: High resistances to SO2 and potassium. J Ind Eng Chem 36:271–278

    Article  Google Scholar 

  34. Hu W, Zhang Y, Liu S et al (2017) Improvement in activity and alkali resistance of a novel V-Ce(SO4)(2)/Ti catalyst for selective catalytic reduction of NO with NH3. Appl Catal B-Environ 206:449–460

    Article  Google Scholar 

  35. Kustov AL, Kustova MY, Fehrmann R et al (2005) Vanadia on sulphated-ZrO2, a promising catalyst for NO abatement with ammonia in alkali containing flue gases. Appl Catal B 58(1):97–104

    Article  Google Scholar 

  36. Jiang S, Li T, Zheng J et al (2020) Unveiling the remarkable arsenic resistance origin of alumina promoted cerium-tungsten catalysts for NH3-SCR. Environ Sci Technol 54(22):14740–14749

    Article  Google Scholar 

  37. Xu D, Wu W, Wang P et al (2020) Boosting the alkali/heavy metal poisoning resistance for NO removal by using iron-titanium pillared montmorillonite catalysts. J Hazardous Mater 399:122947

    Google Scholar 

  38. Busca G, Lietti L, Ramis G et al (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B-Environ 18(1–2):1–36

    Article  Google Scholar 

  39. Reddy BM, Khan A, Yamada Y et al (2003) Structural characterization of CeO2−TiO2 and V2O5/CeO2−TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107(22):5162–5167

    Article  Google Scholar 

  40. Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem C 113(50):21177–21184

    Article  Google Scholar 

  41. Chen L, Li J, Ablikim W et al (2011) CeO2-WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range. Catal Lett 141(12):1859–1864

    Article  Google Scholar 

  42. Gao X, Jiang Y, Fu YC et al (2010) Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catal Commun 11(5):465–469

    Article  Google Scholar 

  43. Gao X, Jiang Y, Zhong Y et al (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 174(1–3):734–739

    Article  Google Scholar 

  44. Gao X, Du XS, Cui LW et al (2010) A Ce-Cu-Ti oxide catalyst for the selective catalytic reduction of NO with NH3. Catal Commun 12(4):255–258

    Article  Google Scholar 

  45. Song H, Liu S, Zhang M et al (2018) A comparative study of the NH3-SCR reactions over an original and Sb-modified V2O5-WO3/TiO2 catalyst at low temperatures. Energies 11(12):3339

    Article  Google Scholar 

  46. Qi G, Yang RT (2003) A superior catalyst for low-temperature NO reduction with NH3. Chem Commun 7:848–849

    Article  Google Scholar 

  47. Smirniotis PG, Peña DA, Uphade BS (2001) Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2. Angew Chem Int Ed 40(13):2479–2482

    Article  Google Scholar 

  48. Zhang R, Liu N, Luo Z et al (2014) A remarkable catalyst combination to widen the operating temperature window of the selective catalytic reduction of NO by NH3. ChemCatChem 6(8):2263–2269

    Article  Google Scholar 

  49. Qu RY, Gao X, Cen KF et al (2013) Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Appl Catal B-Environ 142:290–297

    Article  Google Scholar 

  50. Liu ZM, Zhang SX, Li JH et al (2014) Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B-Environ 158:11–19

    Article  Google Scholar 

  51. Lin F, Wang QL, Zhang JC et al (2019) Mechanism and kinetics study on low-temperature NH3-SCR over manganese-cerium composite oxide catalysts. Ind Eng Chem Res 58(51):22763–22770

    Article  Google Scholar 

  52. Hu W, Zhang Y, Liu S et al (2017) Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3. Appl Catal B 206:449–460

    Article  Google Scholar 

  53. Liu ZM, Yi Y, Li JH et al (2013) A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia. Chem Commun 49(70):7726–7728

    Article  Google Scholar 

  54. Chang HZ, Chen XY, Li JH et al (2013) Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci Technol 47(10):5294–5301

    Article  Google Scholar 

  55. Lai JK, Wachs IE (2018) A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. ACS Catal 8(7):6537–6551

    Article  Google Scholar 

  56. Tronconi E, Nova I, Ciardelli C et al (2007) Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J Catal 245(1):1–10

    Article  Google Scholar 

  57. Nova I, Ciardelli C, Tronconi E et al (2006) NH3-SCR of NO over a V-based catalyst: low-T redox kinetics with NH3 inhibition. AIChE J 52(9):3222–3233

    Article  Google Scholar 

  58. Hu W, Zou R, Dong Y et al (2021) Mechanism and enhancement of the low-temperature selective catalytic reduction of NOx with NH3 by bifunctional catalytic mixtures. Indus Eng Chem Res 60(18):6446–6454

    Google Scholar 

  59. Sun Q, Gao ZX, Chen HY et al (2001) Reduction of NOx with ammonia over Fe/MFI: reaction mechanism based on isotopic labeling. J Catal 201(1):89–99

    Article  Google Scholar 

  60. Ruggeri MP, Selleri T, Colombo M et al (2014) Identification of nitrites/HONO as primary products of NO oxidation over Fe-ZSM-5 and their role in the Standard SCR mechanism: a chemical trapping study. J Catal 311:266–270

    Article  Google Scholar 

  61. Selleri T, Ruggeri MP, Nova I et al (2016) The low temperature interaction of NO + O2 with a commercial Cu-CHA catalyst: a chemical trapping study. Top Catal 59(8–9):678–685

    Article  Google Scholar 

  62. Ye D, Qu R, Zhang Y et al (2018) Investigating the role of H4SiW12O40 in the acidity, oxidability and activity of H4SiW12O40-Fe2O3 catalysts for the selective catalytic reduction of NO with NH3. Mol Catal 448:177–184

    Article  Google Scholar 

  63. Li C, Shen M, Yu T et al (2017) The mechanism of ammonium bisulfate formation and decomposition over V/WTi catalysts for NH3-selective catalytic reduction at various temperatures. Phys Chem Chem Phys 19(23):15194–15206

    Article  Google Scholar 

  64. Magnusson M, Fridell E, Ingelsten HH (2012) The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl Catal B 111:20–26

    Article  Google Scholar 

  65. Ma SC, JIn X, Sun YX (2010) Formation mechanism and control of ammonium bisulfate in SCR flue gas denitrification process. Therm Power Gener 39(8):12–17 (in Chinese)

    Google Scholar 

  66. Thogersen J, Slabiak T, White N (2010) Ammonium bisulphate inhibition of SCR catalysts. Haldor Topsoe Inc., Frederikssund, Denmark

    Google Scholar 

  67. Zheng L, Zhou M, Huang Z et al (2016) Self-protection mechanism of hexagonal WO3-based DeNOx catalysts against Alkali poisoning. Environ Sci Technol 50(21):11951–11956

    Article  Google Scholar 

  68. Wang X, Du X, Zhang L et al (2018) Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5-WO3/TiO2 catalyst for NO reduction. Appl Catal A 559:112–121

    Article  Google Scholar 

  69. Qu R, Ye D, Zheng C et al (2016) Exploring the role of V2O5 in the reactivity of NH4HSO4 with NO on V2O5/TiO2 SCR catalysts. RSC Adv 6(104):102436–102443

    Article  Google Scholar 

  70. Ye D, Qu R, Song H et al (2016) Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5-WO3/TiO2 SCR catalysts. RSC Adv 6(60):55584–55592

    Article  Google Scholar 

  71. Fang X, Liu Y, Chen L et al (2020) Influence of surface active groups on SO2 resistance of birnessite for low-temperature NH3-SCR. Chem Eng J 399:125798

    Google Scholar 

  72. Yu Y, Tan W, An D et al (2021) Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: a collaborated experimental and DFT study. Appl Catal B: Environ 281:119544

    Google Scholar 

  73. Ye D, Qu R, Song H et al (2016) New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2O5/TiO2 catalyst surfaces. Chem Eng J 283:846–854

    Article  Google Scholar 

  74. Pang C, Zhuo Y, Qin Y (2018) Research on the NH4HSO4 decomposition activity of different support-guidance to the development of NH4HSO4-resistant SCR catalysts for NOx abatement. In: 2018 2nd international conference on green energy and applications (ICGEA), 24–26 March 2018, 254–262

    Google Scholar 

  75. Chai YX, Zhang GZ, He H et al (2020) Theoretical study of the catalytic activity and anti-SO2 poisoning of a MoO3/V2O5 selective catalytic reduction catalyst. ACS Omega 5(42):26978–26985

    Article  Google Scholar 

  76. Wang X, Du X, Liu S et al (2020) Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: A combined DFT and experimental study. Appl Catal B: Environ 260:118168

    Google Scholar 

  77. Fan ZY, Shi JW, Niu CH et al (2020) The insight into the role of Al2O3 in promoting the SO2 tolerance of MnOx for low-temperature selective catalytic reduction of NOx with NH3. Chem Eng J 398:125572

    Google Scholar 

  78. Li J, Guo J, Shi X et al (2020) Effect of aluminum on the catalytic performance and reaction mechanism of Mn/MCM-41 for NH3-SCR reaction. Appl Surf Sci 534:147592

    Google Scholar 

  79. Yu C, Hou D, Huang B et al (2020) A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: Strong SO2-tolerance for low temperature DeNOx processes. J Hazardous Mater 399:123011

    Google Scholar 

  80. Zhang Y, Li G, Wu P et al (2020) Effect of SO2 on the low-temperature denitrification performance of Ho-modified Mn/Ti catalyst. Chem Eng J 400:122597

    Google Scholar 

  81. Ye D, Qu R, Zheng C et al (2018) Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts. Appl Catal A 549:310–319

    Article  Google Scholar 

  82. Kamata H, Ohara H, Takahashi K et al (2001) SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catal Lett 73(1):79–83

    Article  Google Scholar 

  83. Dunn JP, Koppula PR, Stenger G et al (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B 19(2):103–117

    Article  Google Scholar 

  84. Dunn JP, Stenger HG, Wachs IE (1999) Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts. Catal Today 53(4):543–556

    Article  Google Scholar 

  85. Ji P, Gao X, Du X et al (2016) Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation. Catal Sci Technol 6(4):1187–1194

    Article  Google Scholar 

  86. Zheng C, Xiao L, Qu R et al (2019) Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst. Chem Eng J 361:874–884

    Article  Google Scholar 

  87. Xin Q, Hua Z, Fu Y et al (2020) Investigation on optimal active layer thickness and pore size in dual-layer NH3-SCR monolith for low SO2 oxidation by numerical simulation. Fuel 279:118420

    Google Scholar 

  88. Zhao H, Ezeh CI, Ren W et al (2019) Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials. Appl Energy 254:113651

    Google Scholar 

  89. Li H, Feng S, Liu Y et al (2017) Binding of mercury species and typical flue gas components on ZnS (110). Energy Fuels 31(5):5355–5362

    Article  Google Scholar 

  90. Suarez Negreira A, Wilcox J (2013) DFT study of Hg oxidation across Vanadia-Titania SCR catalyst under flue gas conditions. J Phys Chem C 117(4):1761–1772

    Article  Google Scholar 

  91. Widmann D, Behm RJ (2018) Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. J Catal 357:263–273

    Article  Google Scholar 

  92. Yang S, Qi F, Xiong S et al (2016) MnOx supported on Fe-Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity. Appl Catal B 181:570–580

    Article  Google Scholar 

  93. Zhao H, Mu X, Zheng C et al (2019) Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. J Hazard Mater 366:240–249

    Article  Google Scholar 

  94. Zhao H, Ezeh CI, Yin S et al (2020) MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+. Appl Catal B: Environ 263:117829

    Google Scholar 

  95. Zhao H, Liu S, Li W et al (2019) Mechanism of Hg0 and O2 interaction on the IrO2 (110) surface: a density functional theory study. Energy Fuels 33(2):1354–1362

    Article  Google Scholar 

  96. Zhao H, Yin S, Lu L et al (2020) Catalytic oxidation of Hg0 with O2 induced by synergistic coupling of CeO2 and MoO3. J Hazardous Mater 381:121037

    Google Scholar 

  97. Cao Y, Chen B, Wu J et al (2007) Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal. Energy Fuels 21(1):145–156

    Article  Google Scholar 

  98. He S, Zhou J, Zhu Y et al (2009) Mercury oxidation over a Vanadia-based selective catalytic reduction catalyst. Energy Fuels 23(1):253–259

    Article  Google Scholar 

  99. Yan N, Chen W, Chen J et al (2011) Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. Environ Sci Technol 45(13):5725–5730

    Article  Google Scholar 

  100. Kamata H, Ueno S-i, Sato N et al (2009) Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Process Technol 90(7):947–951

    Article  Google Scholar 

  101. Song H, Zhang M, Yu J et al (2018) The effect of Cr addition on Hg0 oxidation and NO reduction over V2O5/TiO2 catalyst. Aerosol Air Qual Res 18(3):803–810

    Article  Google Scholar 

  102. Zhang S, Liu SJ, Zhu XC et al (2019) Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts. Appl Surf Sci 479:1132–1140

    Article  Google Scholar 

  103. Qin R, Chen JH, Gao X et al (2014) Catalytic oxidation of acetone over CuCeOx nanofibers prepared by an electrospinning method. RSC Adv 4(83):43874–43881

    Article  Google Scholar 

  104. Zhu XC, Chen JH, Yu XN et al (2015) Controllable synthesis of novel hierarchical V2O5/TiO2 nanofibers with improved acetone oxidation performance. RSC Adv 5(39):30416–30424

    Article  Google Scholar 

  105. Zhu XC, Zhang S, Yu XN et al (2017) Controllable synthesis of hierarchical MnOx/TiO2 composite nanofibers for complete oxidation of low-concentration acetone. J Hazard Mater 337:105–114

    Article  Google Scholar 

  106. Habib HA, Basner R, Brandenburg R et al (2014) Selective catalytic reduction of NOx of ship diesel engine exhaust gas with C3H6 over Cu/Y Zeolite. ACS Catal 4(8):2479–2491

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, X., Zheng, C., Chiang, PC., Cen, K. (2021). Pollutant Control by Catalytic Methods. In: Multi-Pollutant Control for Flue Gases. Advanced Topics in Science and Technology in China, vol 63. Springer, Singapore. https://doi.org/10.1007/978-981-16-1518-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1518-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1516-0

  • Online ISBN: 978-981-16-1518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics