Skip to main content

A Comparative Assessment of Biogas Upgradation Techniques and Its Utilization as an Alternative Fuel in Internal Combustion Engines

  • Chapter
  • First Online:
Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 473 Accesses

Abstract

Growing concern about the rapid depletion of fossil fuels, current environmental conditions, energy challenges and new environmental regulations has encouraged the researchers worldwide for new environmentally compatible alternatives from natural resources. In this context, biogas produced from anaerobic digestion of organic resources may be considered as a significant bioenergy with the potential to address these concerns. Biogas is a mixture of methane and carbon dioxide as the major constituents with other trace components like water vapor, hydrogen sulfide, ammonia, carbon monoxide and nitrogen. Uses of biogas can be seen in heating, cooking, lighting and power production. However, cleaning of biogas from its impurities, mainly CO2 and H2S, can extend its scope of applications. There are numerous physico-chemical (viz. cryogenic, adsorption, membrane separations and absorption) and biological (in situ and ex situ) technologies for biogas upgradation. These operations are aimed at enriching the methane content of biogas above 90% and thereby enhancing the calorific value up to 35.3 MJ/m3. The purpose behind such upgrading is generally focused to meet the fuel standards to be used in vehicles, for injection in the natural gas grid, and to be used as substrate for the production of chemicals or for fuel cell applications. Enriched biogas is compressed and stocked in gas cylinder and transported to the desired location for utilization. Additionally, use of enriched biogas reduces greenhouse gas emissions. This chapter aims at meticulously evaluating the existing and emerging biogas production and upgradation technologies and confers the outlook for overcoming the challenges associated with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

CH4:

Methane

CO2:

Carbon dioxide

N2:

Nitrogen

H2S:

Hydrogen sulfide

NH3:

Ammonia

ppm:

Parts per million

HRT:

Hydraulic retention time

FVW:

Fruit and vegetable wastes

CN:

Carbon Nitrogen

pH:

Potential of hydrogen

IC:

Internal combustion

MEA:

Monoethanolamine

DEA:

Diethanolamine

TEA:

Triethanolamine

DGA:

Diglycolamine

MDEA:

Methyldiethanolamine

PZ:

Piperazine

AMP:

2-Amino-2-methyl-1-propanol

KOH:

Potassium hydroxide

CaCO3:

Calcium carbonate

Na2CO3:

Sodium carbonate

K2CO3:

Potassium carbonate

NaOH:

Sodium hydroxide

Ca(OH)2:

Calcium hydroxide

PSA:

Pressure swing adsorption

MMMs:

Mixed matrix membranes

VFA:

Volatile fatty acids

ATBR:

Anaerobic trickle-bed reactors

CSTR:

Continuous stirred tank reactor

SI:

Spark ignition

CI:

Compression ignition

CR:

Compression ratio

NOx:

Nitrogen oxide

R&D:

Research and development

References

  1. Abatzoglou, N., & Boivin, S. (2008). A review of biogas purification processes. Biofuels, Bioproducts & Biorefining, 3(1), 42–71.

    Article  Google Scholar 

  2. Abdeen, F. R. H., Mel, M., Jami, M. S., Ihsan, S. I., & Ismail, A. F. (2016). A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering, 24, 693–702.

    Article  Google Scholar 

  3. Abushammala, M. F. M., Qazi, W. A., Azam, M. H., Mehmood, U. A., Al-Mufragi, G. A., & Alrawahi, N. A. (2016). Generation of electricity from biogas in Oman. In 3rd MEC International Conference on Big Data and Smart City.

    Google Scholar 

  4. Agneessens, L. M., Ottosen, L. D. M., Voigt, N. V., Nielsen, J. L., de Jonge, N., Fischer, C. H., & Kofoed, M. V. W. (2017). In-situ biogas upgrading with pulse H2 additions: The relevance of methanogen adaption and inorganic carbon level. Bioresource Technology, 233, 256–263.

    Article  Google Scholar 

  5. Alitalo, A., Niskanen, M., & Aura, E. (2015). Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor. Bioresource Technology, 196, 600–605.

    Article  Google Scholar 

  6. Allegue, L. B., & Hinge, J. (2012). Report: Biogas and bio-syngas upgrading. Danish Technological Institute. https://www.teknologisk.dk/_/media/52679_Report-Biogasandsyngasupgrading.pdf.

  7. Andriani, D., Wresta, A., Atmaja, T. D., & Saepudin, A. (2014). A review on optimization production and upgrading biogas through CO2 removal using various techniques. Applied Biochemistry and Biotechnology, 172, 1909–1928.

    Article  Google Scholar 

  8. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 2, 452–466.

    Article  Google Scholar 

  9. Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359–369.

    Article  Google Scholar 

  10. Bansal, N., Srivastava, V. K., & Kheraluwala, J. (2019). Renewable energy in India: Policies to reduce greenhouse gas emissions. In: Greenhouse gas emissions, energy, environment, and sustainability (pp. 161–178).

    Google Scholar 

  11. Bassani, I., Kougias, P. G., Treu, L., & Angelidaki, I. (2015). Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environmental Science and Technology, 49, 12585–12593.

    Article  Google Scholar 

  12. Basu, S., Khan, A., Cano-, A., Liu, C., & Vankelecom, I. (2010). Membrane-based technologies for biogas separations. Chemical Society Reviews, 39, 750–768.

    Article  Google Scholar 

  13. Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. (2002). The IWA anaerobic digestion model no 1 (ADM1). Water Science and Technology, 45, 65–73.

    Article  Google Scholar 

  14. Bauer, F., Persson, T., Hulteberg, C., & Tamm, D. (2013). Biogas upgrading – technology overview, comparison and perspectives for the future. Biofuels, Bioproducts and Biorefining, 7, 499–511.

    Article  Google Scholar 

  15. Bora, B. J., Saha, U. K., Chatterjee, S., & Veer, V. (2014). Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Conversion Management, 30(87), 1000–1009.

    Article  Google Scholar 

  16. Borah, A. J., Singh, S., Goyal, A., & Moholkar, V. S. (2016). An Assessment of Invasive Weeds as Multiple Feedstocks for Biofuels Production. RSC Advances, 6, 47151–47163.

    Article  Google Scholar 

  17. Burkhardt, M., Koschack, T., & Busch, G. (2015). Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresource Technology, 178, 330–333.

    Article  Google Scholar 

  18. Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 27(1), 71–77.

    Article  Google Scholar 

  19. Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Khura, T. K. (2011). Performance evaluation of a constant speed IC engine on CNG methane enriched biogas and biogas. Applied Energy, 88(11), 3969–3977.

    Article  Google Scholar 

  20. Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., & Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC Advances, 5, 24399–24448.

    Article  Google Scholar 

  21. Crookes, R. J. (2006). Comparative biofuel performance in internal combustion engines. International Journal of Biomass and Bioenergy, 30, 461–468.

    Article  Google Scholar 

  22. Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 5(1), 2738–2749.

    Article  Google Scholar 

  23. Deublein, D., & Steinhauser, A. (2010). Biogas from waste and renewable resources: An introduction (2nd ed.). Weinheim: Wiley.

    Book  Google Scholar 

  24. Diaz, I., Perez, S. I., Ferrero, E. M., & Fdz, M. (2011). Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresource Technology, 102(4), 3768–3775.

    Article  Google Scholar 

  25. Dolfing, J., Jiang, B., Henstra, A. M., Stams, A. J., & Plugge, C. M. (2008). Syntrophic growth on formate: A new microbial niche in anoxic environments. Applied and Environment Microbiology, 74, 6126–6131.

    Article  Google Scholar 

  26. Gerardi, M. (2003). The microbiology of anaerobic digesters. Waste water microbiology series (Vol. 7). Wiley, United States of America.

    Google Scholar 

  27. Goffeng, B. (2013). Crynotechnology for biogas. Dept of Chem Eng: Lund University.

    Google Scholar 

  28. Grande, C. A. (2012). Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering. https://doi.org/10.5402/2012/982934.

    Article  Google Scholar 

  29. Green, D. W., & Perry, R. H. (2008). Perry’s chemical engineers’ hand book (8th ed.). New York: McGraw-Hill Companies Inc.

    Google Scholar 

  30. Hagen, M., Polman, E. (2001). Adding gas from biomass to the gas grid. Final report submitted to Danish Gas. Agency (pp. 26–47).

    Google Scholar 

  31. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  Google Scholar 

  32. Hernandez, N. M., & Villanueva, E. P. (2018). Production, purification and utilization of biogas as fuel for internal combustion engine. AIP Conference Proceedings, 1941(020009), 1–11.

    Google Scholar 

  33. Hotta, S. K., Sahoo, N., & Mohanty, K. (2019). Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas. Renewable Energy, 134, 1307–1319.

    Article  Google Scholar 

  34. Jindal, M., Rosha, P., Mahla, S. K., & Dhir, A. (2015). Experimental investigation of performance and emissions characteristics of waste cooking oil biodiesel and n-butanol blends in a compression ignition engine. RSC Advances, 5(43), 33863–33868.

    Article  Google Scholar 

  35. Heywood, J. B. (1988). Internal combustion engine fundamentals. New York: McGraw-Hill.

    Google Scholar 

  36. Kabir, M. M., Rajendran, K., Taherzadeh, M. J., & Sarvari, I. (2015). Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresource Technology, 178, 201–208.

    Article  Google Scholar 

  37. Kacprzak, A., Krzystek, L., & Ledakowicz, S. (2010). Co-digestion of agricultural and industrial wastes. Chemical Papers, 64(2), 127–131.

    Article  Google Scholar 

  38. Kadam, R., & Panwar, N. L. (2017). Recent advancement in biogas enrichment and its applications. Renewable and Sustainable Energy Reviews, 73, 892–903.

    Article  Google Scholar 

  39. Kapdi, S. S., Vijay, V. K., Rajesh, S. K., & Prasad, R. (2005). Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renewable Energy, 30(8), 1195–1202.

    Article  Google Scholar 

  40. Kapoor, R., Ghosh, P., Kumar, M., & Vijay, V. K. (2019). Evaluation of biogas upgrading technologies and future perspectives: A review. Environmental Science and Pollution Research, 26, 11631–21166.

    Article  Google Scholar 

  41. Kougias, P. G., Treu, L., Benavente, D. P., Boe, K., Campanaro, S., & Angelidaki, I. (2017). Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology, 225, 429–437.

    Article  Google Scholar 

  42. Kummamuru, B. (2017). Global bioenergy statistics. World Bioenergy Association (WBA).

    Google Scholar 

  43. Lecker, B., Illi, L., Lemmer, A., & Oechsner, H. (2017). Biological hydrogen methanation—A review. Bioresource Technology, 245, 1220–1228.

    Article  Google Scholar 

  44. Liu, Y., & Whitman, W. B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125, 171–189.

    Article  Google Scholar 

  45. Luo, G., & Angelidaki, I. (2013). Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: Process performance and microbial insights. Applied Microbiology and Biotechnology, 97, 1373–1381.

    Article  Google Scholar 

  46. Mahanta, P., Dewan, A., Saha, U. K., Kalita, P., Buragohain, B. (2005). Biogas digester: A discussion on factors affecting biogas production and field investigation of a novel duplex digester. Journal of Solar Society of India (SESI) Journal, 15(2), 1–12.

    Google Scholar 

  47. Mann, G., Schlegel, M., Schumann, R., & Sakalauskas, A. (2009). Biogas-conditioning with microalgae. Agronomy Research, 7(1), 33–38.

    Google Scholar 

  48. Mata-Alvarez, J., Mace, S., & Llabres, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.

    Google Scholar 

  49. Mitzlaff, K. V. (1988). Engines for Biogas—Theory, Modification, Economic Operation, A publication of German Center for Development Technologies, GTZ-GATE, Germany.

    Google Scholar 

  50. Mohiuddin, K., & Park, S. (2019). Characteristics and fundamentals of particulates in diesel engine. In Engine Exhaust Particulates. Energy, Environment, and Sustainability (pp. 55–69).

    Google Scholar 

  51. Monnet, F. (2003, November). An introduction to anaerobic digestion of organic waste. Final report, Remade Scotland.

    Google Scholar 

  52. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 673–686.

    Google Scholar 

  53. Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A review on the state-of-the art of physical/chemical and biological technologies for biogas upgrading. Reviews in Environmental Science Bio Journal, 14(4), 727–759.

    Google Scholar 

  54. Osorio, F., & Torres, J. C. (2009). Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renewable Energy, 34, 2164–2171.

    Article  Google Scholar 

  55. Pagés-Díaz, J., Pereda, I., Taherzadeh, M. J., Sárvári-Horváth, I., & Lundin, M. (2014). Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chemical Engineering Journal, 245, 89–98.

    Article  Google Scholar 

  56. Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2004). Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 29, 1811–1823.

    Article  Google Scholar 

  57. Patterson, T., Esteves, S., Dinsdale, R., & Guwy, A. (2011). An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy, 39, 1806–1816.

    Article  Google Scholar 

  58. Persson, M. (2003). Evaluation of upgrading techniques for biogas [Internet] Lund School of Environmental Engineering. Available from https://www.sgc.se/document/Evaluation.pdf.

  59. Petersson, A., & Wellinger, A. (2009). Biogas upgrading technologies, developments and innovations. IEA Bioenergy.

    Google Scholar 

  60. Pischinger, S., Rottmann, M., & Fricke, F. (2006). Future of Internal Combustion Engines. SAE 2006-21-0024.

    Google Scholar 

  61. Porpatham, E., Ramesh, A., & Nagalingam, B. (2008). Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel, 87(8), 1651–1659.

    Article  Google Scholar 

  62. Rachbauer, L., Voitl, G., Bochmann, G., & Fuchs, W. (2016). Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle bed reactor. Applied Energy, 180, 483–490.

    Article  Google Scholar 

  63. Ray, N. H. S., Mohanty, M. K., & Mohanty, R. C. (2016). Biogas Compression and Storage System for Cooking Applications in Rural Households. International Journal of Renewable Energy Research, 6(2), 593–598.

    Google Scholar 

  64. Ray, N. H. S., Mohanty, M. K., & Mohanty, R. C. (2013). Biogas as alternate fuel in diesel engines: A literature review. IOSR Journal of Mechanical and Civil Engineering, 9(1), 23–28.

    Article  Google Scholar 

  65. Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass Bioenergy, 35(5), 1633–1645.

    Google Scholar 

  66. Singh, A. P., & Agarwal, A. K. (2018). Low-temperature combustion: An advanced technology for internal combustion engines. Advances in internal combustion engine research. Energy, environment, and sustainability (pp. 9–41).

    Google Scholar 

  67. Singh, H. N., & Layek, A. (2019). An exposition on the results of utilizing biogas as an alternative fuel on the attributes of internal combustion engines. International Journal of Renewable Energy Research, 9(3), 1249–1259.

    Google Scholar 

  68. Steinhauser, A. (2008). Biogas from waste and renewable resources, dieter doublein. Wiley-VCH.

    Google Scholar 

  69. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., & Yu, X. (2015). Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable and Sustainable Energy Reviews, 51, 521–532.

    Article  Google Scholar 

  70. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., et al. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553–566.

    Article  Google Scholar 

  71. Taherzadeh, M., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  Google Scholar 

  72. Tippayawong, N., & Thanompongchart, P. (2010). Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy, 35, 4531–4535.

    Article  Google Scholar 

  73. Viyaj, K. V., Chandra, R., Subbarao, P. M. V., & Kapid, S. S. (2006). Biogas purification and Bottling into CNG Cylinders: Producing Bio-CNG from Biomass for Rural Automotive Applications. A paper presentation at The 2nd Joint International Conference on Sustainable Energy and Environment (SEE) on 21–23 November, Bangkok, Thailand.

    Google Scholar 

  74. Wang, W., Xie, L., Luo, G., Zhou, Q., & Angelidaki, I. (2013). Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresource Technology, 146, 234–239.

    Article  Google Scholar 

  75. Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  Google Scholar 

  76. Wellinger, A., & Lindberg, A. (1999). Biogas upgrading and utilization. IEA Bioenergy, Task 24: Energy from biological conversion of organic wastes (pp. 1–19).

    Google Scholar 

  77. Yadav, D., Barbora, L., Bora, D., Mitra, S., Rangan, L., & Mahanta, P. (2017). An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. International Biodeterioration & Biodegradation, 119, 253–259.

    Article  Google Scholar 

  78. Yang, B., & Wyman, C. E. (2008). Pretreatment: the key to unlocking low‐cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26–40.

    Google Scholar 

  79. Yeh, J. T., & Pennline, H. W. (2001). Study of CO2 absorption and desorption in a packed column. Energy & Fuels, 15(2), 274–278.

    Article  Google Scholar 

  80. Yun, Y. M., Sung, S., Kang, S., Kim, M. S., & Kim, D. H. (2017). Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading. Energy, 135, 294–302.

    Article  Google Scholar 

  81. Zhao, Q., Leonhardt, E., MacConnell, C., Frear, C., & Chen, S. (2010). Purification technologies for biogas generated by anaerobic digestion. CSANR Research Report.

    Google Scholar 

  82. Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 35–53.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of New and Renewable Energy, Government of India, for the above project (256/3/2017-BIOGAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lepakshi Barbora or Pinakeswar Mahanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, D., Barbora, L., Borah, A.J., Mahanta, P. (2021). A Comparative Assessment of Biogas Upgradation Techniques and Its Utilization as an Alternative Fuel in Internal Combustion Engines. In: Singh, A.P., Kumar, D., Agarwal, A.K. (eds) Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-1513-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1513-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1512-2

  • Online ISBN: 978-981-16-1513-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics