Skip to main content

Practical Consensus of Multi-agent Networks with Communication Constraints

  • Chapter
  • First Online:
Collective Behavior in Complex Networked Systems under Imperfect Communication
  • 502 Accesses

Abstract

Due to the limited bitrate of communication channels and limited bandwidth, communication constraints always exist in real-world systems which should be well considered in the design of control strategy or algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aysal TC, Coates M, Rabbat M. Distributed average consensus with dithered quantization. IEEE Trans Signal Process. 2008;56(10):4905–18.

    Article  MathSciNet  Google Scholar 

  2. Gao HJ, Chen TW. H ∞ estimation for uncertain systems with limited communication capacity. IEEE Trans Automat Contr. 2007;52(11):2070–84.

    Article  MathSciNet  Google Scholar 

  3. Gao HJ, Chen TW. A new approach to quantized feedback control systems. Automatica. 2008;44(2):534–42.

    Article  MathSciNet  Google Scholar 

  4. Kar S, Moura JMF. Distributed consensus algorithms in sensor networks: quantized data and random link failures. IEEE Trans Signal Process. 2010;58(3):1383–1400.

    Article  MathSciNet  Google Scholar 

  5. Kashyap A, Basar T, Srikant R. Quantized consensus. Automatica. 2007;43(7):1192–203.

    Article  MathSciNet  Google Scholar 

  6. Shen B, Wang ZD, Shu HS, Wei GL. Robust h ∞ finite-horizon filtering with randomly occurred nonlinearities and quantization effects. Automatica. 2010;46(11):1743–51.

    Article  MathSciNet  Google Scholar 

  7. Wen GH, Duan ZS, Yu WW, Chen GR. Consensus in multi-agent systems with communication constraints. Int J Robust Nonlinear Control. 2012;22(2):170–82.

    Article  MathSciNet  Google Scholar 

  8. Du SL, Sun XM, Cao M, Wang W. Pursuing an evader through cooperative relaying in multi-agent surveillance networks. Automatica. 2017;83:155–61.

    Article  MathSciNet  Google Scholar 

  9. Liu S, Li T, Xie LH, Fu MY, Zhang JF. Continuous-time and sampled-data-based average consensus with logarithmic quantizers. Automatica. 2013;49(11):3329–36.

    Article  MathSciNet  Google Scholar 

  10. Zong XF, Li T, Zhang JF. Consensus conditions of continuous-time multi-agent systems with time-delays and measurement noises. Automatica. 2019;99:412–9.

    Article  MathSciNet  Google Scholar 

  11. Lu JQ, Ho DWC, Kurths J. Consensus over directed static networks with arbitrary finite communication delays. Phys Rev E. 2009;80(6):066121.

    Article  Google Scholar 

  12. Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Contr. 2006;51(3):401–20.

    Article  MathSciNet  Google Scholar 

  13. Qin JH, Gao HJ, Zheng WX. Second-order consensus for multi-agent systems with switching topology and communication delay. Syst Control Lett. 2011;60(6):390–7.

    Article  MathSciNet  Google Scholar 

  14. Xiao F, Wang L. Consensus protocols for discrete-time multi-agent systems with time-varying delays. Automatica. 2008;44(10):2577–82.

    Article  MathSciNet  Google Scholar 

  15. Zhong WS, Liu GP, Rees D. Global bounded consensus of multi-agent systems with non-identical nodes and communication time-delay topology. Int J Syst Sci. 2013;44(2):346–57.

    Article  MathSciNet  Google Scholar 

  16. Lin P, Jia YM. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica. 2009;45(9):2154–8.

    Article  MathSciNet  Google Scholar 

  17. Su HS, Liu YF, Zeng ZG. Second-order consensus for multiagent systems via intermittent sampled position data control. IEEE Trans Cybern. 2020;50(5):2063–72.

    Article  Google Scholar 

  18. Ceragioli F, De Persis C, Frasca P. Discontinuities and hysteresis in quantized average consensus. Automatica. 2011;47(9):1916–28.

    Article  MathSciNet  Google Scholar 

  19. Qing H. Quantized near-consensus via quantized communication links. Int J Contr. 2011;84(5):931–46.

    Article  Google Scholar 

  20. Olfati-Saber R, Murray RM. Consensus problems in networks of agents with switching topology and time delays. IEEE Trans Automat Contr. 2004;49(9):1520–33.

    Article  MathSciNet  Google Scholar 

  21. Forti M, Nistri P, Papini D. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw. 2005;16(6):1449–63.

    Article  Google Scholar 

  22. Hale JK, Lunel SMV. Introduction to functional differential equations. Applied mathematical sciences. New York: Springer; 1933.

    Google Scholar 

  23. Gu KQ, Kharitonov VL, Chen J. Stability of time-delay systems. Boston: Birkhäuser; 2003.

    Book  Google Scholar 

  24. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd. and Science Press, China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, J., Li, L., Ho, D.W.C., Cao, J. (2021). Practical Consensus of Multi-agent Networks with Communication Constraints. In: Collective Behavior in Complex Networked Systems under Imperfect Communication. Springer, Singapore. https://doi.org/10.1007/978-981-16-1506-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1506-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1505-4

  • Online ISBN: 978-981-16-1506-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics