Skip to main content

Development of Melanin-Bearing Pigment Cells in Birds and Mammals

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns

Abstract

Melanin-bearing pigment cells in birds and mammals, much as those in other vertebrates, have at least two developmental origins: the neural crest, giving rise to melanocytes of the integument (skin and its appendages) and of inner organs, and the optic neuroepithelium, giving rise to the retinal pigment epithelium and part of the iris. Both types of cells are derived from precursors that are guided towards their differentiation by complex signaling pathways and transcription factors, some common to both cell types and some unique. Numerous studies show that neural crest-derived melanocytes arise from precursors that emanate from the dorsal neural tube and migrate on a dorso-lateral pathway underneath the surface ectoderm. Others arise from poorly defined precursors that migrate on a ventro-medial pathway and also give rise to Schwann cells. Nevertheless, melanocyte precursors retain developmental plasticity for considerable time, potentially being capable of correcting developmental imbalances in an embryo’s distinct cell populations. Some derivatives even exhibit stem cell features during adulthood, capable of replenishing melanocytes during hair and feather cycles. In fact, the study of the development of melanin-bearing pigment cells provides for fascinating insights into how specific cell types arise and maintain themselves or become abnormal or are lost in pathogenic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I et al (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379

    Article  CAS  PubMed  Google Scholar 

  • Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnheiter H (1998) Evolutionary biology. Eyes viewed from the skin. Nature 391:632–633

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R et al (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322

    Article  CAS  PubMed  Google Scholar 

  • Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19:380–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Bharti K, Gasper M, Ou J, Brucato M, Clore-Gronenborn K, Pickel J, Arnheiter H (2012) A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development. PLoS Genet 8:e1002757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA (2001) SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15:645–658

    Article  CAS  PubMed  Google Scholar 

  • Chen CF, Foley J, Tang PC, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM (2015) Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci 3:169–195

    Article  PubMed  Google Scholar 

  • Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222

    Article  CAS  PubMed  Google Scholar 

  • Dupin E, Le Douarin NM (2014) The neural crest, a multifaceted structure of the vertebrates. Birth Defects Res C Embryo Today 102:187–209

    Article  CAS  PubMed  Google Scholar 

  • Dupin E, Glavieux C, Vaigot P, Le Douarin NM (2000) Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci U S A 97:7882–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM (2003) Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci U S A 100:5229–5233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM (2018) The issue of the multipotency of the neural crest cells. Dev Biol 444(Suppl 1):S47–S59

    Article  CAS  PubMed  Google Scholar 

  • Flesher JL, Paterson-Coleman EK, Vasudeva P, Ruiz-Vega R, Marshall M, Pearlman E, Macgregor GR, Neumann J, Ganesan AK (2020) Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 33:279–292

    Article  CAS  PubMed  Google Scholar 

  • Furlan A, Adameyko I (2018) Schwann cell precursor: a neural crest cell in disguise? Dev Biol 444(Suppl 1):S25–S35

    Article  CAS  PubMed  Google Scholar 

  • Gacem N, Kavo A, Zerad L, Richard L, Mathis S, Kapur RP, Parisot M, Amiel J, Dufour S, De La Grange P et al (2020) ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nat Commun 11:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher SJ, Rambow F, Kumasaka M, Champeval D, Bellacosa A, Delmas V, Larue L (2013) Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 32:2230–2238

    Article  CAS  PubMed  Google Scholar 

  • George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM, Rice GM, Scott Schwoerer JA, Rius M, Tetri L et al (2016) Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness. Am J Hum Genet 99:1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goding CR, Arnheiter H (2019) MITF-the first 25 years. Genes Dev. https://doi.org/10.1101/gad.324657.119

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Hari L, Miescher I, Shakhova O, Suter U, Chin L, Taketo M, Richardson WD, Kessaris N, Sommer L (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139:2107–2117

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Panthier JJ, Arnheiter H (2000) Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development 127:5379–5389

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Pavan WJ, Shin MK, Arnheiter H (2004) Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development. Development 131:3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Huszar D, Sharpe A, Hashmi S, Bouchard B, Houghton A, Jaenisch R (1991) Generation of pigmented stripes in albino mice by retroviral marking of neural crest melanoblasts. Development 113:653–660

    Article  CAS  PubMed  Google Scholar 

  • Inaba M, Jiang TX, Liang YC, Tsai S, Lai YC, Widelitz RB, Chuong CM (2019) Instructive role of melanocytes during pigment pattern formation of the avian skin. Proc Natl Acad Sci U S A 116:6884–6890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaegle M, Ghazvini M, Mandemakers W, Piirsoo M, Driegen S, Levavasseur F, Raghoenath S, Grosveld F, Meijer D (2003) The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev 17:1380–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi SS, Tandukar B, Pan L, Huang JM, Livak F, Smith BJ, Hodges T, Mahurkar AA, Hornyak TJ (2019) CD34 defines melanocyte stem cell subpopulations with distinct regenerative properties. PLoS Genet 15:e1008034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsler VA, Larue L (2018) The patterns of birthmarks suggest a novel population of melanocyte precursors arising around the time of gastrulation. Pigment Cell Melanoma Res 31:95–109

    Article  PubMed  Google Scholar 

  • Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, Angeles M, Whitlow SR, Manova K, Besmer P (2000) Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J 19:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkinaki M, Abu-Asab M, Gunawardena N, Ahern G, Javidnia M, Young J, Golestaneh N (2013) Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J Neurosci 33:16346–16359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Nitzan E, Kalcheim C (2019) YAP promotes neural crest emigration through interactions with BMP and Wnt activities. Cell Commun Signal 17:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Douarin NM (1974) Cell recognition based on natural morphological nuclear markers. Med Biol 52:281–319

    PubMed  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge, Cambridge University Press

    Book  Google Scholar 

  • Letelier J, Bovolenta P, Martinez-Morales JR (2017) The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 31:203–215

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fan L, Zhu S, Shin MK, Lu F, Qu J, Hou L (2017) Epilation induces hair and skin pigmentation through an EDN3/EDNRB-dependent regenerative response of melanocyte stem cells. Sci Rep 7:7272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin SJ, Foley J, Jiang TX, Yeh CY, Wu P, Foley A, Yen CM, Huang YC, Cheng HC, Chen CF et al (2013) Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge. Science 340:1442–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ye F, Li Q, Tamiya S, Darling DS, Kaplan HJ, Dean DC (2009) Zeb1 represses Mitf and regulates pigment synthesis, cell proliferation, and epithelial morphology. Invest Ophthalmol Vis Sci 50:5080–5088

    Article  PubMed  Google Scholar 

  • Lu Z, Xie Y, Huang H, Jiang K, Zhou B, Wang F, Chen T (2020) Hair follicle stem cells regulate retinoid metabolism to maintain the self-renewal niche for melanocyte stem cells. eLife 9:e52712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L (2019) The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 73:100766

    Article  CAS  PubMed  Google Scholar 

  • Mintz B (1967) Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc Natl Acad Sci U S A 58:344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama M, Osawa M, Mak SS, Ohtsuka T, Yamamoto N, Han H, Delmas V, Kageyama R, Beermann F, Larue L et al (2006) Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol 173:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngeow KC, Friedrichsen HJ, Li L, Zeng Z, Andrews S, Volpon L, Brunsdon H, Berridge G, Picaud S, Fischer R et al (2018) BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 115:E8668–E8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M, Arnheiter H (2000) Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127:3581–3591

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK (2011) Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 24:401–410

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  CAS  PubMed  Google Scholar 

  • Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C (2013a) A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140:2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitzan E, Pfaltzgraff ER, Labosky PA, Kalcheim C (2013b) Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 110:12709–12714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124:2377–2386

    Article  CAS  PubMed  Google Scholar 

  • Opdecamp K, Kos L, Arnheiter H, Pavan WJ (1998) Endothelin signalling in the development of neural crest-derived melanocytes. Biochem Cell Biol 76:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Parfejevs V, Debbache J, Shakhova O, Schaefer SM, Glausch M, Wegner M, Suter U, Riekstina U, Werner S, Sommer L (2018) Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 9:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, Nguyen C, Vasseur F, Blanc T, Berissi S et al (2017) MITF - A controls branching morphogenesis and nephron endowment. PLoS Genet 13:e1007093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pla P, Monsoro-Burq AH (2018) The neural border: Induction, specification and maturation of the territory that generates neural crest cells. Dev Biol 444(Suppl 1):S36–S46

    Article  CAS  PubMed  Google Scholar 

  • Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145:941–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B et al (2014) PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 10:e1004360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  • Tassabehji M, Newton VE, Read AP (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 8:251–255

    Article  CAS  PubMed  Google Scholar 

  • Vandamme N, Berx G (2019) From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 76:1919–1934

    Article  CAS  PubMed  Google Scholar 

  • Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66:773–787

    Article  CAS  PubMed  Google Scholar 

  • Weston JA (1991) Sequential segregation and fate of developmentally restricted intermediate cell populations in the neural crest lineage. Curr Top Dev Biol 25:133–153

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AL, Jordan SA, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129:3349–3357

    Article  CAS  PubMed  Google Scholar 

  • Yun S, Saijoh Y, Hirokawa KE, Kopinke D, Murtaugh LC, Monuki ES, Levine EM (2009) Lhx2 links the intrinsic and extrinsic factors that control optic cup formation. Development 136:3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, Goncalves WA, Shwartz Y, Fast EM, Su Y et al (2020) Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577:676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yang K, Carpenter A, Lang RA, Andl T, Zhang Y (2016) CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth. Biochem J 473:3291–3305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Ling Hou, Lionel Larue, and Lukas Sommer for critical suggestions and review of the manuscript. The authors’ own work discussed in this paper was supported in part by NINDS, National Institutes of Health, United States, and the Kanton of Zürich, Switzerland.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnheiter, H., Debbache, J. (2021). Development of Melanin-Bearing Pigment Cells in Birds and Mammals. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_6

Download citation

Publish with us

Policies and ethics