Skip to main content

Color Change in Cephalopods

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns

Abstract

Cephalopods, such as octopuses, cuttlefish, and squid, are members of the phylum Mollusca, are the most common marine organisms utilized as fisheries resource by humans, and play a key role in marine food webs. Besides these characteristics, cephalopods have gained attention in biological science owing to their physiological and anatomical features, such as camera-type eye and a large brain, by which they can perform advanced learning and exhibit some intelligent behaviors such as tool use. All these examples indicate cephalopods as intelligent invertebrates or primates of the ocean. Color change is another remarkable feature of cephalopods; it is achieved through specific chromatic and reflecting cells and controlled neural system connected with the brain, thus accomplishing the fastest and the most varied chromatic changes among the animal kingdom. This chapter reviews color change in cephalopods, which includes a unique chromophore system contributing to rapid color change, related physiological mechanism, and unique chromatic behavior, such as body patterning. Ecological significance of color change in cephalopods has also been explained with some challenging hypothesis for possible color perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo SA, Hanlon RT (1996) Do cuttlefish (Cephalopoda) signal their intentions to conspecifics during agonistic encounters? Anim Behav 52:73–81

    Article  Google Scholar 

  • Alcock J (2005) Animal behavior: an evolutionary approach, 8th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Boyle P, Rodhouse P (2005) Cephalopods: ecology and fisheries. Blackwell Science, Oxford

    Book  Google Scholar 

  • Budelmann BU (1994) Cephalopod sense organs, nerves and the brain: adaptation for high performance and life style. Mar Freshw Behav Physiol 25:13–33

    Article  Google Scholar 

  • Budelmann BU (1995) The cephalopod nervous system: what evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Basel, Birkhäuser, pp 115–138

    Chapter  Google Scholar 

  • Budelmann BU, Schipp R, Boletzky SV (1997) Cephalopoda. In: Frederick FW, Kohn AJ (eds) Microscopic anatomy of invertebrates, mollusca II. Wiley, New York, pp 119–414

    Google Scholar 

  • Clark MR (1987) Cephalopod biomass–estimation from predation. In: Boyle PR (ed) Cephalopod life cycles volume II comparative reviews. Academic Press, London, pp 221–237

    Google Scholar 

  • Cloney RA, Brocco SL (1983) Chromatophore organs, reflector cells, iridocytes and leucophores in cephalopods. Am Zool 23:581–592

    Article  Google Scholar 

  • Cloney RA, Florey E (1968) Ultrastructure of cephalopod chromatophore organs. Z Zellforsch 89:250–280

    Article  CAS  PubMed  Google Scholar 

  • Cornwell CJ, Messenger JB (1995) Neurotransmitters of squid chromatophores. In: Abbott NJ, Williamson R, Maddock L (eds) Cephalopod Neurobiology. Oxford University Press, Oxford, pp 369–379

    Google Scholar 

  • Costa J, Giménez-Casalduero F, Melo R, Jesus B (2012) Colour morphotypes of Elysia timida (Sacoglossa, Gastropoda) are determined by light acclimation in food algae. Aquat Biol 17:81–89

    Article  Google Scholar 

  • Deravi LF, Magyar AP, Sheehy SP, Bell GRR, Mäthger LM, Senft SL, Wardill TJ, Lane ES, Kuzirian AM, Hanlon RT, Hu EL, Parker KK (2014) The structure–function relationships of a natural nanoscale photonic device in cuttlefish chromatophores. J R Soc Interface 11:20130942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubas F, Hanlon RT, Ferguson GP, Pinsker HM (1986a) Localization and stimulation of chromatophore motoneurons in the brain of the squid, Lolliguncula brevis. J Exp Biol 117:415–431

    Article  Google Scholar 

  • Dubas F, Leonard RB, Hanlon RT (1986b) Chromatophore motoneurons in the brain of the squid, Lolliguncula brevis. Brain Res 374:21–29

    Article  CAS  PubMed  Google Scholar 

  • Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32(9):476–484

    Article  CAS  PubMed  Google Scholar 

  • Florey E, Dubas F, Hanlon RT (1985) Evidence for l-glutamate as a transmitter of motoneurons innervating squid chromatophore muscles. Comp Biochem Physiol 82C:259–268

    CAS  Google Scholar 

  • Hanlon RT (1982) The functional organization of chromatophores and iridescent cells in the body patterning of Loligo plei (Cephalopoda: Myopsida). Malacologia 23:89–119

    Google Scholar 

  • Hanlon RT (2007) Cephalopod dynamic camouflage. Curr Biol 17:400–404

    Article  CAS  Google Scholar 

  • Hanlon RT, Messenger JB (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philos Trans Royal Soc London Ser B 320:437–487

    Article  Google Scholar 

  • Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Hanlon RT, Naud M-J, Shaw PW, Havenhand JN (2005) Transient sexual mimicry leads to fertilization. Nature 433:212

    Article  CAS  PubMed  Google Scholar 

  • Hough AR, Case AR, J. and Boal, J. G. (2016) Learned control of body patterning in cuttlefish Sepia officinalis. J Moll Stud 82:427–431

    Article  Google Scholar 

  • Huffard CL (2007) Ethogram of Abdopus aculeatus (d’Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioural characters inform octopodid taxonomy and systematics? J Moll Stud 73:185–193

    Article  Google Scholar 

  • Jantzen TM, Havenhand JN (2003) Reproductive behavior in the squid Sepioteuthis australis from South Australia: ethogram of reproductive body patterns. Biol Bull 204:290–304

    Article  PubMed  Google Scholar 

  • Kawamura G, Nobutoki K, Anraku K, Tanaka Y, Okamoto M (2001) Color discrimination conditioning in two octopus Octopus aegina and O. vulgaris. Nippon Suisann Gakkaishi 67(1):35–39. (in Japanese with English abstract)

    Article  Google Scholar 

  • Kawashima S, Takei K, Yoshikawa S, Yasumuro H, Ikeda Y (2020) Tropical octopus Abdopus aculeatus can learn to recognize real and virtual symbolic objects. Biol Bull 238:12–24

    Article  PubMed  Google Scholar 

  • Kingstone ACN, Kuzirian AM, Hanlon RT, Cronin TW (2015) Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception. J Exp Biol 218:1596–1602

    Article  Google Scholar 

  • Lin C-Y, Tsai Y-C, Chao C-C (2017) Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during reproductive behavior of the oval squid Sepioteuthis lessoniana. Front Ecol Evol 5:30

    Article  Google Scholar 

  • Loi PK, Tublitz NJ (2000) The roles of glutamate and FMRFamide-related peptides at the chromatophore neuro- muscular junction in the cuttlefish Sepia officinalis. J Comp Neurol 420:499–511

    Article  CAS  PubMed  Google Scholar 

  • Loi PK, Saunders RG, Young DC, Tublitz NJ (1996) Peptidergic regulation of chromatophore function in the European cuttlefish Sepia officinalis. J Exp Biol 199:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Marshall NJ, Messenger JB (1996) Colour-blind camouflage. Nature 382:408–409

    Article  CAS  Google Scholar 

  • Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Res 46:1746–1753

    Article  PubMed  Google Scholar 

  • Mäthger LM, Shashar N, Hanlon RT (2009) Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol 212:2133–2140

    Article  PubMed  Google Scholar 

  • Matsui S, Seido M, Horiuchi S, Uchiyama I, Kito Y (1988) Adaptation of deep-sea cephalopod to the photic environment. Evidence for three visual pigments. J Gen Physiol 92:55–66

    Article  CAS  PubMed  Google Scholar 

  • Mattiello T, d’Ischia M, Palumbo A (2013) Nitric oxide in chromatic body patterning elements of Sepia officinalis. J Exp Mar Biol Ecol 447:128–131

    Article  CAS  Google Scholar 

  • McConathy DA, Hanlon RT, Hixon RF (1980) Chromatophore arrangements of hatchling loliginid squids (Cephalopoda, Myopsida). Malacologia 19:279–288

    Google Scholar 

  • Messenger JB (1977) Prey-capture and learning in the cuttlefish, Sepia. Symp Zool Soc Lond 38:347–376

    Google Scholar 

  • Messenger JB (2001) Cephalopod chromatophores: neurobiology and natural history. Biol Rev 76:473–528

    Article  CAS  PubMed  Google Scholar 

  • Messenger JB, Cornwell CJ, Reed CM (1997) l-glutamate and serotonin are endogenous in squid chromatophore nerves. J Exp Biol 200:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Moynihan M (1975) Conservatism of displays and comparable stereotyped patterns among cephalopods. In: Baerends G, Beer C, Manning A (eds) Function and evolution in behaviour. Clarendon Press, Oxford, pp 276–291

    Google Scholar 

  • Moynihan M (1985) Communication and noncommunication by cephalopods. Indiana University Press, Bloomington

    Google Scholar 

  • Moynihan M, Rodaniche AF (1982) The behavior and natural history of the Caribbean reef squid Sepioteuthis sepioidea. Adv Ethol 25:1–151

    Google Scholar 

  • Nakajima R, Ikeda Y (2017) A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar Biodivers 47(2):735–753

    Article  Google Scholar 

  • Nilsson D-E, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant eyes in giant squid. Curr Biol 22:683–688

    Article  CAS  PubMed  Google Scholar 

  • Nixon M (1987) Cephalopod diets. In: Boyle PR (ed) Cephalopod life cycles volume II comparative reviews. Academic Press, London, pp 201–219

    Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopod. Cambridge University Press, Cambridge

    Google Scholar 

  • Norman MD, Finn J, Tregenza T (1999) Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proc Roy Soc Lond A 266:1347–1349

    Article  Google Scholar 

  • Novicki A, Budelmann BU, Hanlon RT (1990) Brain pathway of the chromatophore system in the squid, Lolliguncula brevis. Brain Res 519:315–323

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Mori A, Ikeda Y (2015) Effects of visual cues of a moving predator on body patterns in cuttlefish Sepia pharaonis. Zoolog Sci 32:336–344

    Article  PubMed  Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Article  CAS  Google Scholar 

  • Packard A (1985) Sizes and distribution of chromatophores during post-embryonic development in cephalopods. Vie et Milieu 35:285–298

    Google Scholar 

  • Packard A (1988) The skin of cephalopods (Coleoids): general and special adaptations. In: Trueman ER, Clarke MR (eds) The mollusca, vol. 11: form and function. Academic Press, San Diego, pp 37–67

    Chapter  Google Scholar 

  • Packard A (1995) Organization of cephalopod chromatophore systems: a neuromuscular image-generator. In: Abbott NJ, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 503–520

    Google Scholar 

  • Packard A, Sanders GD (1971) Body patterns of Octopus vulgaris and maturation of the response to disturbance. Anim Behav 19:780–790

    Article  Google Scholar 

  • Peichl L, Behrmann G, Kröger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Poirier R, Chichery R, Dickel L (2005) Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). J Comp Psychol 119:230–237

    Article  PubMed  Google Scholar 

  • Ramirez MD, Oakley TH (2015) Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J Exp Biol 218:1513–1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathjen WF, Voss GL (1987) The cephalopod fisheries: a review. In: Boyle PR (ed) Cephalopod life cycles volume II comparative reviews. Academic Press, London, pp 253–275

    Google Scholar 

  • Reiter S, Hülsdunk P, Woo T, Lauterbach MA, Eberle JS, Akay LA, Longo A, Meier-Credo J, Kretschmer F, Langer JD, Kaschube M, Laurent G (2018) Elucidating the control and development of skin patterning in cuttlefish. Nature 562:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen H, Gilly W, Bell L, Abernathy K, Marshall G (2015) Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package. J Exp Biol 218:265–275

    Article  PubMed  Google Scholar 

  • Schnell AK, Smith CL, Hanlon RT, Hall KC, Harcourt R (2016) Cuttlefish perform multiple agonistic display to communicate a hierarchy of threats. Behav Ecol Sociobiol 70:1643–1655

    Article  Google Scholar 

  • Seidou M, Sugahara M, Uchiyama H, Hiraki K, Hamanaka T, Michinomae M, Yoshihara K, Kito Y (1990) On the three visual pigments of the firefly squid, Watasenia scintillans. J Comp Physiol A 166:769–773

    Article  Google Scholar 

  • Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish – a concealed communication channel? J Exp Biol 199:2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Stubbs AL, Stubbs CW (2016) Spectral discrimination in color blind animals via chromatic aberration and pupil shape. Proc Natl Acad Sci 113(29):8206–8211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Kimura T, Ogawa H, Hotta K, Oka K (2011) Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS One 6(4):e18244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeny AM, Haddock SH, Johnsen S (2007) Comparative visual acuity of coleoid cephalopods. Integr Comp Biol 47(6):808–814

    Article  Google Scholar 

  • Toyofuku T, Wada T (2018) Chromatophore arrangement and photophore formation in the early development of swordtip squid Uroteuthis (Photololigo) edulis. Fish Sci 84:9–15

    Article  CAS  Google Scholar 

  • Trueblood LA, Zylinski S, Robison BH, Seibel BA (2015) An ethogram of the Humboldt squid Dosidicus gigas Orbigny (1835) as observed from remotely operated vehicles. Behaviour 152:1911–1932

    Article  Google Scholar 

  • Wardill TJ, Gonzalez-Bellido PT, Crook RJ, Hanlon RT (2015) Neural control of tuneable skin iridescence in squid. Proc R Soc Lond B 279:4243–4252

    Google Scholar 

  • Wells MJ (1978) Octopus physiology and behaviour of an advanced invertebrate. University Printing House, London

    Book  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

    Article  PubMed  Google Scholar 

  • Williams TL, Senft SL, Yeo J, Martín-Martínez FJ, Kuzirian AM, Martin CA, DiBona CW, Chen C-T, Dinneen SR, Nguyen HT, Gomes CM, Rosenthal JJC, MacManes MD, Chu F, Buehler MJ, Hanlon RT, Deravi LF (2019) Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat Commun 10:1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasumuro H, Ikeda Y (2016) Environmental enrichment accelerates the ontogeny of cryptic behavior in pharaoh cuttlefish (Sepia pharaonis). Zoolog Sci 33:255–265

    Article  PubMed  Google Scholar 

  • Young JZ (1971) The anatomy and nervous system of Octopus vulgaris. Clarendon Press, Oxford

    Google Scholar 

  • Young JZ (1976) The nervous system of Loligo. II Subesophageal centres. Philos Trans Roy Soc London Ser B 274:101–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I give thanks to my laboratory members who offered photographs. Daisuke Ueno (Kagoshima University) and Shuichi Shigeno (Osaka University) are acknowledged for their permission to use photographs and unpublished data. Sumire Kawashima (University of the Ryukyus) is given thanks for drawing Figs. 14.5, 14.6, and 14.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeda, Y. (2021). Color Change in Cephalopods. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_14

Download citation

Publish with us

Policies and ethics