Skip to main content

Evolution and Advancements in Solar Drying Technologies: A Review

  • Conference paper
  • First Online:
Latest Trends in Renewable Energy Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 760))

Abstract

Solar drying methods are used since long times and efforts are made to utilize these non-replenishable sources of energy in more effective and efficient manner. From old times, the use of solar energy is limited to very few applications. But as time passed, solar energy use has evolved to vast areas for drying industrial products, edible goods and agricultural products. Recently, the solar drying systems are integrated with other renewable and non-renewable sources of energy to have more reliable systems. This paper reviews various technologies and different areas of applications that are linked up with solar drying systems. Study of various technologies already used in solar drying field and how these evolutions give way to new ideas and more competitiveness to solar energy is carried out. A comparison of other non-renewable sources of energy like electric energy, energy from burning of coal and natural gas, etc with solar energy is evaluated. Future advancements can be carried out in the solar drying area by working on waste energy management techniques and coupling these too drying systems. Methods used for drying products other than solar drying also be incorporated with solar drying to study the drying product behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Sukhatme, S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage (Tata McGraw-Hill, New Delhi, 1996)

    Google Scholar 

  2. https://www.oas.org/dsd/publications/Unit/oea79e/ch05.htm

  3. G. Pirasteh, R. Saidur, S.M.A. Rahman, N.A. Rahim, A review on development of solar drying applications. Renew. Sustain. Energy Rev. 31, 133–148 (2014)

    Article  Google Scholar 

  4. E. Kabir, P. Kumar, S. Kumar, A.A Adelodun, K.-H Kim, Solar energy: potential and future prospects. Renew. Sustain. Energy Rev. 82, 894–900 (2018)

    Article  Google Scholar 

  5. S. Vijayavenkataraman, S. Iniyan, R. Goic, A review of solar drying technologies. Renew. Sustain. Energy Rev. 16, 2652–2670 (2012)

    Google Scholar 

  6. N. Ahmed, J. Singh, H. Chauhan, P. Gupta, A. Anjum, H. Kour, Different drying methods: their applications and recent advances. Int. J. Food Nutr. Saf. 4, 34–42 (2013)

    Google Scholar 

  7. K.M. Bataineh, S. Alrifai, Recent trends in solar thermal sorption cooling system technology. Adv. Mech. Eng. 7, 120 (2015)

    Google Scholar 

  8. G.O.G. Lof, Recent investigations in the use of solar energy for the drying of solids. Sol Energy 6, 122–128 (1962)

    Article  Google Scholar 

  9. A. Esper, W. Muhlbaucr, Solar drying – an effective means of food preservation. Renew. Energy 15, 95–100 (1998)

    Article  Google Scholar 

  10. N. Ahmed, J. Singh, H. Chauhan, P.G.A. Anjum, H. Kour, Different drying methods: their applications and recent advances. Int. J. Food Nutr. Saf. 4, 34–42 (2013)

    Google Scholar 

  11. V. Tomar, G.N. Tiwari, B. Norton, Solar dryers for tropical food preservation: thermophysics of crops, systems and components. Sol. Energy 154, 2–13 (2017)

    Google Scholar 

  12. A. Arata, V.K. Sharma, G. Spanga, Performance evaluation of solar assisted dryers for low temperature drying application-II. Exp. Results 34, 417–426 (1973)

    Google Scholar 

  13. W.N.M. Desa, M. Mohammad, A. Fudholi, Review of drying technology of fig. Trends Food Sci. Technol. 88, 93–103 (2019)

    Google Scholar 

  14. O.I. Okoro, T.C. Madueme, Solar energy investments in a developing economy. Renew. Energy 29, 1599–1610 (2004)

    Article  Google Scholar 

  15. A.K. Mahapatra, L. Imre, Role of solar agricultural drying in developing countries. Int. J. Ambient Energy 2, 205–210 (1990)

    Article  Google Scholar 

  16. M.A. Hossain, J.L. Woods, B.K. Bala, Optimisation of solar tunnel drier for drying of chilli without color loss. Renew. Energy 30, 729–742 (2005)

    Article  Google Scholar 

  17. O.V. Ekechukwu, Experimental studies of integral-type natural-circulation solar-energy tropical crop dryers. Ph.D. thesis. Cranfield Institute of Technology, United Kingdom, (1987)

    Google Scholar 

  18. O.V. Ekechukwu, B. Norton, Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers. Manage. 40, 615–655 (1999)

    Article  Google Scholar 

  19. O.V. Ekechukwu, Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Convers Manag 40, 593–613 (1999)

    Article  Google Scholar 

  20. O.V. Ekechukwu, B. Norton, Review of solar-energy drying systems III: low temperature air-heating solar collectors for crop drying applications. Energy Convers. Manag.(1999)

    Google Scholar 

  21. R.R. Milczarek, R. Avena-Mascareno, J. Alonzo, M.I. Fichot, Improving the sun drying of apricots (Prunus armeniaca) with photo-selective dryer cabinet materials. J. Food Sci. 81, 2466–2475 (2016)

    Article  Google Scholar 

  22. D. Jain, P. Tiwari, Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew. Energy 80, 244–250 (2015)

    Article  Google Scholar 

  23. D.R. Pangavhane, R.L. Sawhney, Review of research and development work on solar dryers for grape drying. Energy Convers. Manag. 43, 45–61 (2002)

    Article  Google Scholar 

  24. A.E. Akachukwu, Solar kiln dryers for timber and agricultural crops. Int. J. Ambient Energy 7, 95–101 (1986)

    Article  Google Scholar 

  25. U.J. Taylor, A.D. Weir, Simulation of a solar timber dryer. Sol. Energy 34, 249–255 (1985)

    Article  Google Scholar 

  26. K.J. Chua, S.K. Chou, Low cost drying methods for developing countries. Trends Food Sci. Technol. 14, 519–528 (2003)

    Article  Google Scholar 

  27. B.K. Huang, C.G. Bowers, Solar-energy utilization using greenhouse bulk curing and drying systems, in Proc Sol Crop Dry Conf. (Raleigh, USA, 1977), pp. 117–145

    Google Scholar 

  28. K. Li, C. Liu, S. Jiang, Y. Chen, Review on hybrid geothermal and solar power systems. J. Clean. Prod. (2019)

    Google Scholar 

  29. K. Li, H. Bian, C. Liu, D. Zhang, Y. Yang, Comparison of geothermal with solar and wind power generation systems. Renew. Sustain. Energy Rev. 42, 1464–1474(2015)

    Google Scholar 

  30. F. Calise, M.D. D’Accadia, A. MacAluso, A. Piacentino, L. Vanoli, Exergetic and exergo-economic analysis of a novel hybrid solar-geothermal poly-generation system producing energy and water. Energy Convers. Manag. 115, 200–220 (2016)

    Article  Google Scholar 

  31. F. Ruzzenenti, M. Bravi, D. Tempesti, E. Salvatici, G. Manfrida, R. Basosi, Evaluation of the environmental sustainability of a 483 micro CHP system fuelled by low-temperature geothermal and solar energy. Energy Convers.Manag. 78, 611–616 (2014)

    Article  Google Scholar 

  32. D. Tempesti, G. Manfrida, D. Fiaschi, Thermodynamic analysis of two micro CHP systems operating with geothermal and solar 506 energy. Appl. Energy 97, 609–617 (2012)

    Article  Google Scholar 

  33. A.S. Joshi, I. Dincer, B.V. Reddy, Performance analysis of photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13, 1884–1897 (2009)

    Article  Google Scholar 

  34. U. Desideri, F. Zepparelli, V. Morettini, E. Garroni, Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations. Appl. Energy 102, 765–784 (2013)

    Article  Google Scholar 

  35. B. Mendecka, L. Lombardi, P. Gladysz, Waste to energy efficiency improvements: integration with solar thermal energy. Waste Manag. Res. 37, 419–434 (2019)

    Google Scholar 

  36. A. Magrinho, V. Semiao, Estimation of residual MSW heating value as a function of waste component recycling. Waste Manag. 28, 2675–2683 (2008)

    Article  Google Scholar 

  37. Y.C. Chen, Evaluation of greenhouse gas emissions from waste management approaches in the islands. Waste Manag. Res. 35, 691–699 (2017)

    Article  Google Scholar 

  38. T. Tabata, P. Tsai, Heat supply from municipal solid waste incineration plants in Japan: current situation and future challenges. Waste Manag. Res. 34, 148–155(2016)

    Google Scholar 

  39. H. Spliethoff, N. Kaeding, M.J. Murer, E. Alonso-Herranz, O. Gohlke, Combining energy from waste and concentrated solar power: new solutions for sustainable energy generation, in International Solid Waste Association (ISWA) World Congress, Hamburg, Germany, November (2010), pp. 15–18

    Google Scholar 

  40. G. Mazzuco, G. Xotta, V.A. Salomoni, M. Giannuzzi, C.E. Miorana, Solid thermal storage with PCM materials. Numer. Investig. Appl. Therm. Eng. 124, 545–559 (2017)

    Article  Google Scholar 

  41. S.M. Shalaby, M.A. Bek, A.A. El-Sebaii, Solar dryers with PCM as energy storage medium: a review. Renew. Sustain. Energy Rev. 33, 110–116 (2014)

    Article  Google Scholar 

  42. I. Dincer, M.A. Rosen, Thermal Energy Storage: Systems and Applications, 2nd edn. (Wiley,New York, 2010)

    Google Scholar 

  43. D. Laing, W.D. Steinmann, R. Tamme, C. Richter, Solid media thermal storage for parabolic trough power plants. Sol. Energy 80, 1283–1289 (2006)

    Article  Google Scholar 

  44. H. Michels, R. Pitz-Paal, Cascaded latent heat storage for parabolic trough solar power plants. Sol. Energy 81, 829–837 (2007)

    Article  Google Scholar 

  45. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  Google Scholar 

  46. J. Wurm, D. Kosar, T. Clemens, Solid desiccant technology review. Bull. Int. Inst. Refrig. 82, 2–31 (2002)

    Google Scholar 

  47. D. La, Y.J. Dai, Y. Li, R.Z. Wang, T.S. Ge, Technical development of rotary desiccant dehumidification and air conditioning: a review. Renew. Sustain. Energy Rev. 14, 130–147 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shubham, Nain, S. (2021). Evolution and Advancements in Solar Drying Technologies: A Review. In: Vadhera, S., Umre, B.S., Kalam, A. (eds) Latest Trends in Renewable Energy Technologies. Lecture Notes in Electrical Engineering, vol 760. Springer, Singapore. https://doi.org/10.1007/978-981-16-1186-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1186-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1185-8

  • Online ISBN: 978-981-16-1186-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics