Skip to main content

Repair and Regeneration After Important Visceral Injury

  • Chapter
  • First Online:
Regenerative Medicine in China

Abstract

Visceral organs are the participants and maintainers of various life activities of the body. Various injuries such as trauma, surgery, organ transplantation, inflammatory bowel disease, and other serious diseases will cause damage to internal organs. The main reason is the double impact of ischemia and reperfusion, which in turn causes the activation of complement-phagocytic-lymphocyte in the body, causing local and systemic inflammatory reactions, dysfunction of coagulation system, hypermetabolic status, etc., eventually leading to multiple organ dysfunction syndrome (MODS), and even multiple systemic organ failure (MSOF) also called multiple organ failure (MOF). Visceral organ damage, especially multiple organ function damage, is an important feature of the aggravation of traumatic injury and the occurrence of complications. For open wounds, damaged organs can be repaired and reconstructed by surgery. However, for closed injury such as ischemia-reperfusion injury to intestine, liver, kidney, and lung; ischemic injury of donors during organ transplantation; and multiple organ damage after traumatic (burn) injury, especially the occult shock of the intestinal tract, etc., the organ itself has ischemic damage that is difficult to distinguish with the naked eye; the pathogenesis of such damage is complex, wide, and concealed; there is a lack of effective prosthetic measures; and the repair after injury is often not easy to attract people’s attention, thus leading to the death of patients. According to experts’ statistics, more than half of all deaths are caused by visceral complications after severe burns; two-thirds of the injured in serious traffic accidents are accompanied by visceral injury, which is the primary cause of disability and death. MODS is also ranked first in the cause of death in the intensive care unit. In general, the death of the visceral injury after severe trauma is mainly divided into two stages: early death, which is closely related to shock or severe brain injury; and late death, which is mainly caused by MODS or multiple system organ failure (MSOF), and its occurrence is associated with systemic inflammatory response syndrome (SIRS), ischemia-reperfusion injury, and endotoxemia. Among them, organ ischemia-reperfusion injury and microcirculatory dysfunction (the second hit) are one of the central links of visceral complications after severe trauma. For visceral injury, previous studies focused on the pathogenesis of visceral injury and initially clarified the role of infection, uncontrolled inflammatory response, and oxygen-free radical activation in the occurrence of severe visceral injury. However, it is worth noting that previous studies have focused too much on the pathogenesis of organ damage, while there is a lack of in-depth discussion on the outcome of damaged organs. Therefore, it is essential to strengthen the prevention and treatment of visceral injuries and promote the early repair and reconstruction of damaged organs to guarantee life safety. How to accelerate and promote the repair of damaged internal organs has become the key to determine the success of serious trauma treatment, especially to prevent MODS and MSOF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michalopoulos GK, DeFrances MC. Liver Regeneration. Science. 1997;276:60.

    Article  CAS  PubMed  Google Scholar 

  2. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20:857–69.

    Article  CAS  PubMed  Google Scholar 

  3. Michalopoulos GK. Liver Regeneration. J Cell Physiol. 2007;213:286–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kordes C, Häussinger D. Hepatic stem cell niches. J Clin Invest. 2013;123:1874–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu M, Kurobe M, Jeong YJ, et al. Wnt/β-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–91.

    Article  CAS  PubMed  Google Scholar 

  6. Preisegger KH, Factor VM, Fuchsbichler A, et al. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Investig. 1999;79:103–9.

    CAS  PubMed  Google Scholar 

  7. Akhurst B, Croager EJ, Farley-Roche CA, et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001;34:519–22.

    Article  CAS  PubMed  Google Scholar 

  8. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  9. Yanger K, Knigin D, Zong Y, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15:340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology. 2014;60:278–89.

    Article  CAS  PubMed  Google Scholar 

  11. Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah(−/−)/Rag2(−/−)/Il2rg (−/−) mice. Nat Biotechnol. 2007;25:903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Zhao L, Fish M, et al. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015;524:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Font-Burgada J, Shalapour S, Ramaswamy S, et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell. 2015;162:766–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in oval cell injury. Hepatology (Baltimore, Md.). 2014;60:278–89.

    Article  CAS  Google Scholar 

  16. Tarlow BD, Pelz C, Naugler WE, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pu W, Zhang H, Huang X, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475:390–3.

    Article  CAS  PubMed  Google Scholar 

  19. Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475:386–9.

    Article  CAS  PubMed  Google Scholar 

  20. Huang P, Zhang L, Gao Y, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14:370–84.

    Article  CAS  PubMed  Google Scholar 

  21. Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14:394–403.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Qin J, Wang S, et al. Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell. 2016;19:449–61.

    Article  CAS  PubMed  Google Scholar 

  23. Levy G, Bomze D, Heinz S, et al. Long-term culture and expansion of primary human hepatocytes. Nat Biotechnol. 2015;33:1264–71.

    Article  CAS  PubMed  Google Scholar 

  24. Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katsuda T, Kawamata M, Hagiwara K, et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell. 2017;20(1):41–55.

    Article  CAS  PubMed  Google Scholar 

  26. Song G, Pacher M, Balakrishnan A, et al. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell. 2016;18:797–808.

    Article  CAS  PubMed  Google Scholar 

  27. Rezvani M, Espanol-Suner R, Malato Y, et al. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell. 2016;18:809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhatia SN, Underhill GH, Zaret KS, et al. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6(245):245sr2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    Article  CAS  PubMed  Google Scholar 

  30. Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  31. Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Med. 2010;16:814–20.

    Article  CAS  PubMed  Google Scholar 

  32. Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17.

    Article  CAS  PubMed  Google Scholar 

  33. Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science (New York, N.Y.). 2010;329:538–41.

    Article  CAS  Google Scholar 

  34. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Cui CB, Yamauchi M, et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53:293–305.

    Article  CAS  PubMed  Google Scholar 

  36. Ren X, Moser PT, Gilpin SE, et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol. 2015;33:1097–102.

    Article  CAS  PubMed  Google Scholar 

  37. Shi XL, Gao Y, Yan Y, et al. Improved survival of porcine acute liver failure by a bioartificial liver device implanted with induced human functional hepatocytes. Cell Res. 2016;26:206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang YH, Fu XB, Sun TZ. Effects of bFGF on the expression of endogenous bFGF and TGF in the intestinal tract after ischemia reperfusion. World Chin J Digestol. 1999;7(9):793–4.

    Google Scholar 

  39. Xing F, Guo BC, Li JY, et al. Effect of epidermal growth factor on gut function and mucosal permeability in rats after gut ischemia-reperfusion injury. Chin Crit Care Med. 2002;14(11):650–3.

    Google Scholar 

  40. Zhao JY, Fu XB, Chen W. Effects of modified acidic fibroblast growth factor on apoptosis in intestinal tissue after ischemia and perfusion in rats. J Traum Surg. 2005;6:441–3.

    Google Scholar 

  41. Fu XB, Yang YH, Sun TZ, et al. Effects of inhibition or antiendogenous basic fibroblast growth factor on functional changes in intestine, liver and kidneys in rats after gut ischemia reperfusion injury. Chin Crit Care Med. 2000.

    Google Scholar 

  42. Zhou HF, Shi SH, Zhang JM, et al. Influence of Cuyu granule on the healing quality of rat gastric ulcer due to acetic acid. Hubei J Trad Chin Med. 2006;28(3):1–13.

    Google Scholar 

  43. Zheng XG, Zhang GA, Yang XG, et al. Study of the mechanism of Weitongning protecting action on stomach membrane of rats with acetic acid gastric ulcer. Hubei J Trad Chin Med. 2003;25(6):7–8.

    Google Scholar 

  44. Wang GZ, Li CJ, Fang XC, et al. Effect of bone marrow mesenchymal stem cells on gastric ulcer repairing. Chin J Rep Reconstr Surg. 2015;29(7):889–92.

    Google Scholar 

  45. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    Article  CAS  PubMed  Google Scholar 

  46. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 1998;18(9):3206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gage FH, Kempermann G, Palmer TD, et al. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249–66.

    Article  CAS  PubMed  Google Scholar 

  49. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):1472–9.

    Article  CAS  PubMed  Google Scholar 

  50. Gould E, Tanapat P, Cameron HA. Adrenal steroids suppress granule cell death in the developing dentate gyrus through an NMDA receptor-dependent mechanism. Brain Res Dev Brain Res. 1997;103(103):91–3.

    Article  CAS  PubMed  Google Scholar 

  51. Gould E, Tanapat P, Hastings NB, et al. Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci. 1999;3(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  52. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng W, Saxe MD, Gallina IS, et al. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29(43):13532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clelland CD, Choi M, Romberg C, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325(5937):210–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aimone JB, Li Y, Lee SW, et al. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moreno MM, Linster C, Escanilla O, et al. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci U S A. 2009;106(42):17980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  58. Breton-Provencher V, Lemasson M, Peralta MR III, et al. Inter neurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci. 2009;29(48):15245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ortega F, Gascon S, Masserdotti G, et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol. 2013;15(6):602–13.

    Article  CAS  PubMed  Google Scholar 

  60. Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci. 2002;22(2):437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parent JM, Vexler ZS, Gong C, et al. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802–13.

    Article  PubMed  Google Scholar 

  62. Van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.

    Article  PubMed  CAS  Google Scholar 

  63. Hastings NB, Gould E. Rapid extension of axons into the CA3 region by adult-generated granule cells 56. J Comp Neurol. 1999;413:146–54.

    Article  CAS  PubMed  Google Scholar 

  64. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–17.

    Article  CAS  PubMed  Google Scholar 

  65. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11:1153–61.

    Article  CAS  PubMed  Google Scholar 

  66. Kirn JR, Fishman Y, Sasportas K, et al. Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J Comp Neurol. 1999;411(3):487–94.

    Article  CAS  PubMed  Google Scholar 

  67. Burghardt NS, Park EH, Hen R, et al. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012;22(9):1795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus. 2002;12:578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem. 2009;16:147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lemasson M, Saghatelyan A, Olivo-Marin JC, et al. Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J Neurosci. 2005;25(29):6816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakamoto M, Ieki N, Miyoshi G, et al. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci. 2014a;34(17):5788–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Banasr M, Hery M, Brezun JM, et al. Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus 12. Eur J Neurosci. 2001;14(9):1417–24.

    Article  CAS  PubMed  Google Scholar 

  73. Rice AC, Khaldi A, Harvey HB, et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol. 2003;183(2):406–17.

    Article  CAS  PubMed  Google Scholar 

  74. Gao X, Chen J. Conditional knockout of brain-derived neurotrophic factor in the hippocampus increases death of adult-born immature neurons following traumatic brain injury. J Neurotrauma. 2009;26(8):1325–35.

    Article  PubMed  Google Scholar 

  75. Villasana LE, Westbrook GL, Schnell E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol. 2014;261:156–62.

    Article  CAS  PubMed  Google Scholar 

  76. Bye N, Carron S, Han X, et al. Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res. 2011;89(7):986–1000.

    Article  CAS  PubMed  Google Scholar 

  77. Sun D, Colello RJ, Daugherty WP, et al. Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma. 2005;22(1):95–105.

    Article  PubMed  Google Scholar 

  78. Gao X, Chen J. Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Exp Neurol. 2013;239:38–48.

    Article  CAS  PubMed  Google Scholar 

  79. Gao X, Deng-Bryant Y, Cho W, et al. Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. J Neurosci Res. 2008;86(10):2258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Costine BA, Missios S, Taylor SR, et al. The subventricular zone in the immature piglet brain: anatomy and exodus of neuroblasts into white matter after traumatic brain injury. Dev Neurosci. 2015;37(2):115–30.

    Article  CAS  PubMed  Google Scholar 

  81. Sun D, McGinn MJ, Zhou Z, et al. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol. 2007;204(1):264–72.

    Article  PubMed  Google Scholar 

  82. Sun D, Daniels TE, Rolfe A, et al. Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma. 2014;32(7):495–505.

    Article  Google Scholar 

  83. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4.

    Article  CAS  PubMed  Google Scholar 

  84. Kukekov VG, Laywell ED, Suslov O, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999;156(2):333–44.

    Article  CAS  PubMed  Google Scholar 

  85. Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9(9):439–47.

    Article  CAS  PubMed  Google Scholar 

  86. Murrell W, Palmero E, Bianco J, et al. Expansion of multipotent stem cells from the adult human brain. PLoS One. 2013;8(8):e71334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bergmann O, Liebl J, Bernard S, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9.

    Article  CAS  PubMed  Google Scholar 

  89. Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83.

    Article  CAS  PubMed  Google Scholar 

  90. Zheng W, Zhuge Q, Zhong M, et al. Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma. 2013;30(22):1872–80.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Taylor SR, Smith C, Harris BT, et al. Maturation dependent response of neurogenesis after traumatic brain injury in children. J Neurosurg Pediatr. 2013;12(6):545–54.

    Article  PubMed  Google Scholar 

  92. Lee C, Agoston DV. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma. 2010;27:541–53.

    Article  PubMed  Google Scholar 

  93. Shi J, Longo FM, Massa SM. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells. 2013;31(11):2561–74.

    Article  CAS  PubMed  Google Scholar 

  94. Ricard J, Salinas J, Garcia L, et al. EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci. 2006;31(4):713–22.

    Article  CAS  PubMed  Google Scholar 

  95. Theus MH, Ricard J, Bethea JR, et al. EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 2010;28(7):1231–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carlson SW, Madathil SK, Sama DM, et al. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol. 2014;73(8):734–46.

    Article  CAS  PubMed  Google Scholar 

  97. Sun D, Bullock MR, Altememi N, et al. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma. 2010;27(5):923–38.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kleindienst A, McGinn MJ, Harvey HB, et al. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotrauma. 2005;22(6):645–55.

    Article  PubMed  Google Scholar 

  99. Thau-Zuchman O, Shohami E, Alexandrovich AG, et al. Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(5):1008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma. 2007;24(7):1132–46.

    Article  PubMed  Google Scholar 

  101. Xiong Y, Mahmood A, Meng Y, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg. 2010;113(3):598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Han X, Tong J, Zhang J, et al. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J. Neurotrauma. 2011;28(6):995–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bregy A, Nixon R, Lotocki G, et al. Posttraumatic hypothermia increases double cortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Exp Neurol. 2012;233(2):821–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kovesdi E, Gyorgy AB, Kwon SK, et al. The effect of enriched environment on the outcome of traumatic brain injury; a behavioral, proteomics, and histological study. Front Neurosci. 2011;5:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xuan W, Vatansever F, Huang L, et al. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19(10):108003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Blaya MO, Bramlett HM, Naidoo J, et al. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma. 2014;31(5):476–86.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chohan MO, Bragina O, Kazim SF, et al. Enhancement of neurogenesis and memory by a neurotrophic peptide in mild to moderate traumatic brain injury. Neurosurgery. 2015;76(2):201–14.

    Article  PubMed  Google Scholar 

  108. Umschweif G, Liraz-Zaltsman S, Shabashov D, et al. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics. 2014;11(3):665–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cho KO, Lybrand ZR, Ito N, et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun. 2015;6:6606.

    Article  CAS  PubMed  Google Scholar 

  110. Pitkanen A, Kemppainen S, Ndode-Ekane XE, et al. Posttraumatic epilepsy — disease or comorbidity[J]? Epilepsy Behav. 2014;38:19–24.

    Article  PubMed  Google Scholar 

  111. Kempermann G, Jessberger S, Steiner B, et al. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52.

    Article  CAS  PubMed  Google Scholar 

  112. Volarevic V, Erceg S, Bhattacharya SS, et al. Stem cell-based therapy for spinal cord injury. Cell Transplant. 2013;22(8):1309–23.

    Article  PubMed  Google Scholar 

  113. Duan H, Wei S, Wen Z, et al. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci. 2016;59(12):1313.

    Article  CAS  PubMed  Google Scholar 

  114. Erceg S, Ronaghi M, Oria M, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010;28(9):1541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells. 2009;27(1):78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012;122(11):3824–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lukovic D, Moreno-Manzano V, Klabusay M, et al. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Front Genet. 2014;14(5):132.

    Google Scholar 

  118. Lukovic D, Moreno Manzano V, Stojkovic M, et al. Concise review: human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. 2012;30(9):1787–92.

    Article  PubMed  Google Scholar 

  119. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nori S, Okada Y, Yasuda A, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A. 2011;108(40):16825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  122. Hawryluk GW, Mothe AJ, Chamankhah M, et al. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012;21(3):432–47.

    Article  CAS  PubMed  Google Scholar 

  123. Himes BT, Neuhuber B, Coleman C, et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair. 2006;20(2):278–96.

    Article  PubMed  Google Scholar 

  124. Hawryluk GW, Mothe A, Wang J, et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21(12):2222–38.

    Article  CAS  PubMed  Google Scholar 

  125. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  126. Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol. 2012;235(1):78–90.

    Article  PubMed  Google Scholar 

  127. Sasaki M, Radtke C, Tan AM, et al. BDNF hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2011;29(47):14932–41.

    Article  CAS  Google Scholar 

  128. Martinez AM, Goulart CO, Ramalho Bdos S, et al. Neurotrauma and mesenchymal stem cells treatment: from experimental studies to clinical trials. World J Stem Cells. 2014;6(2):179–94.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013;78(2):64–75.

    Google Scholar 

  130. Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15(8–9):675–87.

    Article  PubMed  Google Scholar 

  131. Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73.

    Article  PubMed  Google Scholar 

  132. Kumar A, Kumar S, Narayanan R, et al. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7(4):241–8.

    PubMed  Google Scholar 

  133. Cristante AF, Barros-Filho TE, Tatsui N, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2009;47(10):733–8.

    Article  CAS  PubMed  Google Scholar 

  134. Rao YJ, Zhu WX, Du ZQ, et al. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res. 2014;13(2):4124–9.

    Article  CAS  PubMed  Google Scholar 

  135. Munoz-Quiles C, Santos-Benito FF, Llamusi MB, et al. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J Neuropathol Exp Neurol. 2009;68(12):1294–308.

    Article  PubMed  Google Scholar 

  136. Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(9):2376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006;29(3):191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant. 2007;16(2):133–50.

    Article  PubMed  Google Scholar 

  139. Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells. 2009;27(3):733–43.

    Article  PubMed  CAS  Google Scholar 

  140. Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 2010;28(1):93–9.

    Article  PubMed  Google Scholar 

  141. Yang Z, Zhang A, Duan H, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A (PNAS). 2015;112(43):13354–9.

    Article  CAS  Google Scholar 

  142. Duan H, Ge W, Zhang A, et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A (PNAS). 2015;112(43):13360–5.

    Article  CAS  Google Scholar 

  143. Dahlin LB. The biology of nerve injury and repair. J Am Soc Surg Hand. 2004;4(3):143–55.

    Article  Google Scholar 

  144. Millesi H. Bridging defects: autologous nerve grafts. Acta Neurochir. 2007;100:37–8.

    CAS  Google Scholar 

  145. Gordon T, Tyreman N, Raji MA. The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci. 2011;31(14):5325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Ther. 2000;25(3):391–414.

    CAS  Google Scholar 

  147. Hart MK, Brannstrom T, Wiberg M, et al. Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: time course of cell death and elimination. Exp Brain Res. 2002;142(3):308–18.

    Article  Google Scholar 

  148. Geuna S, Raimondo S, Ronchi G, et al. Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol. 2009;87(Chapter 3):27–46.

    Article  PubMed  Google Scholar 

  149. Makwana M, Raivich G. Molecular mechanisms in successful peripheral regeneration. FEBS J. 2005;272(11):2628–38.

    Article  CAS  PubMed  Google Scholar 

  150. Calenda G, Strong TD, Pavlovich CP, et al. Whole genome microarray of the major pelvic ganglion after cavernous nerve injury: new insights into molecular profile changes after nerve injury. BJU Int. 2012;109(10):1552–64.

    Article  CAS  PubMed  Google Scholar 

  151. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004;16(5):1–7.

    Article  Google Scholar 

  152. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76.

    Article  CAS  PubMed  Google Scholar 

  153. Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol. 2012;98(1):16–37.

    Article  CAS  PubMed  Google Scholar 

  154. McArthur JC, Yiannoutsos C, Simpson DM, et al. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group team 291. Neurology. 2000;54(5):1080–8.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang CG, Welin D, Novikov L, et al. Motorneuron protection by N-acetyl-cysteine after ventral root avulsion and ventral rhizotomy. Br J Plast Surg. 2005;58(6):765–73.

    Article  PubMed  Google Scholar 

  156. Schlosshauer B, Dreesmann L, Schaller HE, et al. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59(4):740–7.

    Article  PubMed  Google Scholar 

  157. Pabari A, Lloyd-Hughes H, Seifalian AM, et al. Nerve conduits for peripheral nerve surgery. Plast Reconstr Surg. 2014;133(6):1420–30.

    Article  CAS  PubMed  Google Scholar 

  158. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.

    Article  CAS  PubMed  Google Scholar 

  159. Mobasseri SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci Mater Med. 2013;24(7):1639–47.

    Article  CAS  PubMed  Google Scholar 

  160. Hersel U, Dahmen C. Kessler H.RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.

    Article  CAS  PubMed  Google Scholar 

  161. de Luca AC, Terenghi G, Downes S. Chemical surface modification of poly-epsilon-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J Tissue Eng Regen Med. 2014;8(2):153–63.

    Article  PubMed  CAS  Google Scholar 

  162. Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ. ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng. 2007;13(12):2863–70.

    Article  CAS  PubMed  Google Scholar 

  163. Lewin SL, Utley DS, Cheng ET, et al. Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope. 1997;107(7):992–9.

    Article  CAS  PubMed  Google Scholar 

  164. Fine EG, Decosterd I, Papaloizos M, et al. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J NeuroSci. 2002;15(4):589–601.

    Article  PubMed  Google Scholar 

  165. Kalbermatten DF, Erba P, Mahay D, et al. Schwann cell strip for peripheral nerve repair. J Hand Surg Eur Vol. 2008;33(5):587–94.

    Article  CAS  PubMed  Google Scholar 

  166. Radtke C, Vogt PM. Peripheral nerve regeneration: a current perspective. Eplasty. 2009;9:e47.

    PubMed  PubMed Central  Google Scholar 

  167. Shiotani A, O'Malley BW Jr, Coleman ME, et al. Reinnervation of motor endplates and increased muscle fiber size after human insulin-like growth factor I gene transfer into the paralyzed larynx. Hum Gene Ther. 1998;9(14):2039–47.

    Article  CAS  PubMed  Google Scholar 

  168. Nagata K, Itaka K, Baba M, et al. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury. J Control Release. 2014;183(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  169. Moimas S, Novati F, Ronchi G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther. 2013;20(10):1014–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chen J, Chu YF, Chen JM, et al. Synergistic effects of NGF, CNTF and GDNF on functional recovery following sciatic nerve injury in rats. Adv Med Sci. 2010;55(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  171. Cesar M, Roussanne-Domergue S, Coulet B, et al. Transplantation of adult myoblasts or adipose tissue precursor cells by high-density injection failed to improve reinnervated skeletal muscles. Muscle Nerve. 2008;37(2):219–30.

    Article  PubMed  Google Scholar 

  172. Halum SL, Naidu M, Delo DM, et al. Injection of autologous muscle stem cells (myoblasts) for the treatment of vocal fold paralysis: a pilot study. Laryngoscope. 2007;117(5):917–22.

    Article  PubMed  Google Scholar 

  173. Fishman JM, Tyraskis A, Maghsoudlou P, et al. Skeletal muscle tissue engineering: which cell to use? Tissue Eng B Rev. 2013;19(6):503–15.

    Article  CAS  Google Scholar 

  174. Artico M, Cervoni L, Nucci F, et al. Birthday of peripheral nervous system surgery: the contribution of Gabriele Ferrara(1543-1627). Neurosurgery. 1996;39(2):380–2.

    Article  CAS  PubMed  Google Scholar 

  175. Seddon HJ. Nerve grafting and other unusual forms of nerve repair. Spec Rep Ser. 1954;282:389–417.

    CAS  Google Scholar 

  176. Millesi H, Meissl G, Berger A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am. 1972;54(4):727–50.

    Article  CAS  PubMed  Google Scholar 

  177. Moore AM. Nerve transfers to restore upper extremity function: a paradigm shift. Front Neurol. 2014;5(5):40.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Hubei Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, B. et al. (2021). Repair and Regeneration After Important Visceral Injury. In: Fu, X. (eds) Regenerative Medicine in China. Springer, Singapore. https://doi.org/10.1007/978-981-16-1182-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1182-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1181-0

  • Online ISBN: 978-981-16-1182-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics