Skip to main content

Dimensionality Reduction by Consolidated Sparse Representation and Fisher Criterion with Initialization for Recognition

  • 1077 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1378)


A sparse representation-based classifier has demonstrated potential results in face recognition but meets a small sample problem i.e. number of input images is less than an image dimension. To overcome this issue, dimensionality reduction methods can be employed in a sparse representation framework. Along this direction, sparse representation is often clubbed with the Fisher discriminant criterion. Most of these methods consider a random projection matrix to start with. The performance of dimensionality reduction procedure mostly depends on the projection matrix. In this paper, we show that a better-initialized projection matrix can perform much better than its random counterpart. Further, we are able to reduce the dimension of the projection matrix by half without losing much information. The experiments performed on the Extended Yale B, CMU-PIE and Coil-20 datasets demonstrate the efficacy of the proposed approach.


  • Dimensionality reduction
  • Sparse Representation (SR)
  • Sparse Representation Classifier (SRC)
  • Initialization
  • Face recognition

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Chen, S., Qiao, L., Tan, X.: Sparsity preserving projections with applications to face recognition. Pattern Recogn. 43(1), 331–341 (2010)

    CrossRef  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisher-faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    CrossRef  Google Scholar 

  3. Gao, Q., Wang, Q., Huang, Y., Gao, X., Hong, X., Zhang, H.: Dimensionality reduction by integrating sparse representation and fisher criterion and its applications. IEEE Trans. Image Process. 24(12), 5684–5695 (2015)

    CrossRef  MathSciNet  Google Scholar 

  4. Tenenbaum, J.B.: Mapping a manifold of perceptual observations. In: Advances in Neural Information Processing Systems, pp. 682–688 (1998)

    Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    CrossRef  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    CrossRef  Google Scholar 

  7. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, pp. 153–160 (2004)

    Google Scholar 

  8. Gui, J., Sun, Z., Jia, W., Rongxiang, H., Lei, Y., Ji, S.: Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recogn. 45(8), 2884–2893 (2012)

    CrossRef  Google Scholar 

  9. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR 2011, pp. 625–632. IEEE (2011)

    Google Scholar 

  10. Yang, J., Chu, D., Zhang, L., Xu, Y., Yang, J.: Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans. Neural Netw. Learn. Syst. 24(7), 1023–1035 (2013)

    CrossRef  Google Scholar 

  11. Donoho, D.L., Tsaig, Y.: Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    CrossRef  Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Lee, K.-C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    CrossRef  Google Scholar 

  14. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 53–58. IEEE (2002)

    Google Scholar 

  15. Nene, S.A., Nayar, S.K., Murase, H.: Columbia image object library (coil-20). Department of Computer Science, Columbia University, New York, NY, USA, Technical report CUCS-006-96 (1996)

    Google Scholar 

  16. Zhao, W., Chellappa, R., Jonathon Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR) 35(4), 399–458 (2003)

    CrossRef  Google Scholar 

  17. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  18. Shen, C., Chen, L., Dong, Y., Priebe, C.E.: Sparse representation classification beyond l1 minimization and the subspace assumption. IEEE Trans. Inf. Theory 66(8), 5061–5071 (2020).

    CrossRef  MATH  Google Scholar 

  19. Xu, Y., Cheng, J.: Face recognition algorithm based on correlation coefficient and ensemble-augmented sparsity. IEEE Access 8, 183972–183982 (2020).

    CrossRef  Google Scholar 

  20. Mandal, S., Thavalengal, S., Sao, A.K.: Explicit and implicit employment of edge-related information in super-resolving distant faces for recognition. Pattern Anal. Appl. 19(3), 867–884 (2016).

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavda, P., Mandal, S., Mitra, S.K. (2021). Dimensionality Reduction by Consolidated Sparse Representation and Fisher Criterion with Initialization for Recognition. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)