Skip to main content

Automatic On-Road Object Detection in LiDAR-Point Cloud Data Using Modified VoxelNet Architecture

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Abstract

Automatic detection of objects play an important and key role in developing real time applications related to robotics and autonomous driving vehicles. The latest research trend in computer vision is to detect objects in the 3D point cloud data produced by LiDAR (Light Detection and Ranging) sensors mounted on the self driving cars. This research paper aims at proposing modifications to the existing VoxelNet architecture for object detection. The proposed models perform direct 3D convolution on the point cloud data. Firstly, the point cloud is encoded into a suitable format in the detection pipeline, and next, the feature maps are extracted from the encoded output of the encoder, and lastly, object detection is done using this learnt feature maps in the final stage. Experimental results on the benchmark KITTI dataset show that the proposed modifications outperform the existing VoxelNet based models and other fusion based methods in terms of accuracy as well as time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu, L., Ouyang, W., Wang, X.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128, 261–318 (2020)

    Article  Google Scholar 

  2. https://oceanservice.noaa.gov/facts/lidar.html

  3. Ahmed, E., Das, R.: A survey on deep learning advances on different 3D data representations (2019)

    Google Scholar 

  4. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  5. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L.: Deep learning for 3D point clouds: a survey (2019)

    Google Scholar 

  6. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

  7. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving (MV3D). In: CVPR (2017)

    Google Scholar 

  8. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R:. Monocular 3D object detection for autonomous driving. In: CVPR (2016)

    Google Scholar 

  9. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3D object detection from RGB-D data. In: CVPR (2018)

    Google Scholar 

  10. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  11. Yan, Y., Mao, Y., Li, B.: Sparsely embedded convolutional detection. MDPI Sens. 18(10), 3337 (2018)

    Article  Google Scholar 

  12. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  13. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point R-CNN (2019)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: CVPR (2015)

    Google Scholar 

  15. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: ICCV (2015)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. KITTI 3D detection benchmark dataset. http://www.cvlibs.net/datasets/kitti/eval_object.php

  19. WAYMO Open Dataset. https://waymo.com/open/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nikhil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikhil, G.N., Meraz, M., Javed, M. (2021). Automatic On-Road Object Detection in LiDAR-Point Cloud Data Using Modified VoxelNet Architecture. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics