Skip to main content

Neuronal Unit of Thoughts (NUTs); A Probabilistic Formalism for Higher-Order Cognition

  • Conference paper
  • First Online:
Communication and Intelligent Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 204))

Abstract

A probabilistic graphical model, Neuronal Unit of Thoughts (NUTs), is proposed in this paper that offers a formalism for the integration of lower-level cognitions. Nodes or neurons in NUTs represent sensory data or mental concepts or actions, and edges the causal relation between them. A node affects a change in the Action Potential (AP) of its child node, triggering a value change once the AP reaches a fuzzy threshold. Multiple NUTs may be crossed together producing a novel NUTs. The transition time in a NUTs, in response to a ‘surprise,’ is characterized, and the formalism is evaluated in the context of a non-trivial application: Autonomous Driving with imperfect sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hrabia CE (2019) Self-adaptive and self-organised planning and decision-making for multi-robot systems. Doctoral thesis, Technische Universität Berlin, Berlin

    Google Scholar 

  2. Friston K (2003) Learning and inference in the brain. Neural Netw 16(9):1325–1352

    Article  Google Scholar 

  3. Knill DC, Pouget A (2004) The bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12)

    Google Scholar 

  4. Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447(7148):1075–1080

    Article  Google Scholar 

  5. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J Field Robot 37(3):362–386

    Article  Google Scholar 

  6. Kuutti S, Bowden R, Jin Y, Barber P, Fallah S (2020) A survey of deep learning applications to autonomous vehicle control. IEEE Trans Intell Transp Syst, 1–22

    Google Scholar 

  7. Wymann B, Espié E, Guionneau C, Dimitrakakis C, Coulom R, Sumner A (2013) TORCS, the open racing car simulator, v1.3.5. http://www.torcs.org

  8. Claussmann L, Revilloud M, Gruyer D, Glaser S (2019) A review of motion planning for highway autonomous driving. IEEE Trans Intell Transport Syst 21(5)

    Google Scholar 

  9. Alcorn MA, Li Q, Gong Z, Wang C, Mai L, Ku WS, Nguyen A (2019) Strike (with) a pose: neural networks are easily fooled by strange poses of familiar objects. In: Proceedings CVPR 2019

    Google Scholar 

  10. Michaelis C, Mitzkus B, Geirhos R, Rusak E, Bringmann O, Ecker AS, Bethge M, Brendel W (2019) Benchmarking robustness in object detection: autonomous driving when winter is coming. CoRR abs/1907.07484

    Google Scholar 

  11. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: Common practices and emerging technologies. IEEE Access 8:58443–58469

    Article  Google Scholar 

  12. Chen C, Seff A, Kornhauser A, Xiao J (2015) Deepdriving: learning affordance for direct perception in autonomous driving. Proceedings ICCV 2015. IEEE Computer Society, USA, pp 2722–2730

    Google Scholar 

  13. Stein B (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  Google Scholar 

  14. Toker D, Sommer FT (2019) Information integration in large brain networks. PLOS Comput Biol 15(2):1–26

    Article  Google Scholar 

  15. Hassabis D, Kumaran D, Summerfield C, Botvinick M (2017) Neuroscience-inspired artificial intelligence. Neuron 95(2):245–258

    Article  Google Scholar 

  16. Stuss D, Alexander M (2009) Frontal lobe syndrome. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 375–381

    Chapter  Google Scholar 

  17. Kotseruba I, Tsotsos JK (2018) 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53

    Google Scholar 

  18. Ullman S (1980) Against direct perception. Behav Brain Sci 3(3):373–381

    Article  Google Scholar 

  19. Wessnitzer J, Webb B (2006) Multimodal sensory integration in insects–towards insect brain control architectures. Bioinspiration Biomimet 1(3):63–75

    Article  Google Scholar 

  20. Gibson JJ (1972) A theory of direct visual perception. In: Noe A, Thompson E (eds) Vision and mind: selected readings in the philosophy of perception. MIT Press, pp 77–89

    Google Scholar 

  21. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Automat 2(1):14–23

    Article  Google Scholar 

  22. Eliasmith C (2013) How to build a brain: a neural architecture for biological cognition. Oxford University Press, Oxford

    Book  Google Scholar 

  23. Thagard P (2012) Cognitive architectures. Cambridge University Press, Cambridge

    Google Scholar 

  24. Anderson JR, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1050

    Article  Google Scholar 

  25. Rosenbloom P, Demski A, Ustun V, Sigma T, Architecture C (2016) The sigma cognitive architecture and system: towards functionally elegant grand unification. J Artif Gener Intell 7(1)

    Google Scholar 

  26. Laird JE (2012) The soar cognitive architecture. The MIT Press, Cambridge

    Book  Google Scholar 

  27. Laird JE, Lebiere C, Rosenbloom P (2017) A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag 38(4)

    Google Scholar 

  28. Stewart TC, Eliasmith C (2013) Parsing sequentially presented commands in a large-scale biologically realistic brain model. In: 35th annual conference of the cognitive science society, pp 3460–3467

    Google Scholar 

  29. Coward LA (2011) Modelling memory and learning consistently from psychology to physiology. Springer, Berlin

    Book  Google Scholar 

  30. Chipman SEF, O’Reilly RC, Hazy TE, Herd SA (2015) The Leabra cognitive architecture: how to play 20 principles with nature and win! Oxford University Press, Oxford

    Book  Google Scholar 

  31. Fedor A, Zachar I, Szilágyi A, Öllinger M, de Vladar HP, Szathmáry E (2017) Cognitive architecture with evolutionary dynamics solves insight problem. Front Psychol 8:427

    Google Scholar 

  32. Mizutani H, Ueno M, Arakawa N, Yamakawa H (2018) Whole brain connectomic architecture to develop general artificial intelligence. Procedia Comput Sci 123:308–313

    Article  Google Scholar 

  33. Mamdani E (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Eng 121:1585–1588(3)

    Google Scholar 

  34. Salem M, Mora AM, Merelo JJ, García-Sánchez P (2017) Driving in torcs using modular fuzzy controllers. In: Squillero G, Sim K (eds) Applications of evolutionary computation. Springer International Publishing, Cham, pp 361–376

    Chapter  Google Scholar 

  35. Sowa JF (1984) Conceptual structures: information processing in mind and machine. Addison-Wesley Longman Publishing Co., Inc, Boston

    MATH  Google Scholar 

  36. Sowa JF (2008) Conceptual graphs. In: Handbook of knowledge representation

    Google Scholar 

  37. MacLennan B (2015) Cognitive modeling: connectionist approaches. In: Wright JD (ed) International encyclopedia of the social and behavioral sciences, 2nd edn. Elsevier, Oxford, pp 84–89

    Chapter  Google Scholar 

  38. Rao R, Ballard D (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci 2:79–87

    Article  Google Scholar 

  39. Bogacz R (2017) A tutorial on the free-energy framework for modelling perception and learning. J Math Psychol 76:198–211

    Article  MathSciNet  Google Scholar 

  40. Garnelo M, Shanahan M (2019) Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr Opin Behav Sci 29:17–23

    Article  Google Scholar 

  41. Blumberg BM, Galyean TA (1995) Multi-level direction of autonomous creatures for real-time virtual environments. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. SIGGRAPH ’95, Association for computing machinery, New York, pp 47–54. https://doi.org/10.1145/218380.218405

  42. Jazayeri M, Movshon JA (2006) Optimal representation of sensory information by neural populations. Nat Neurosci 9(5):690–696

    Article  Google Scholar 

  43. Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cerebral Cortex 13(11):1257–1269

    Article  Google Scholar 

  44. Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing neural networks through neuroevolution. Nat Mach Intell 1

    Google Scholar 

  45. Szabó ZG (2017) Compositionality. In: Zalta EN (ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, summer 2017 edn

    Google Scholar 

  46. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. In: Pinker S, Mehler J (eds) Connections and Symbols. MIT Press, Cambridge, pp 3–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nordin Zakaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakaria, N. (2021). Neuronal Unit of Thoughts (NUTs); A Probabilistic Formalism for Higher-Order Cognition. In: Sharma, H., Gupta, M.K., Tomar, G.S., Lipo, W. (eds) Communication and Intelligent Systems. Lecture Notes in Networks and Systems, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-16-1089-9_66

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1089-9_66

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1088-2

  • Online ISBN: 978-981-16-1089-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics