Skip to main content

Prenatal Diagnosis and Preimplantation Genetic Diagnosis

  • Chapter
  • First Online:
Clinical Molecular Diagnostics
  • 3008 Accesses

Abstract

Nowadays, millions of individuals suffer from dominant or recessive genetic mutations that cause highly severe or life-threatening phenotypes in the world. In total, the Online Mendelian Inheritance in Man (OMIM) database currently reports more than 4600 phenotypes with a genetic cause. In fact, every individual carries alleles that in a homozygous state could cause recessive disorders. Besides, approximately 0.2% of the human population are carriers of a balanced translocation that often causes infertility or recurrent miscarriages (owing to embryonically lethal segmental aneuploidies in the conceptuses), or severe birth defects in offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu L, Li K, Fu X, et al. A forward look at noninvasive prenatal testing. Trends Mol Med. 2016;22:958–68.

    Article  PubMed  Google Scholar 

  2. Vermeesch JR, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17:643–56.

    Article  CAS  PubMed  Google Scholar 

  3. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    Article  CAS  PubMed  Google Scholar 

  4. Daley R, Hill M, Chitty LS. Non-invasive prenatal diagnosis: progress and potential. Arch Dis Child Fetal Neonatal Ed. 2014;99:F426–30.

    Article  PubMed  Google Scholar 

  5. Wong FC, Lo YM. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.

    Article  CAS  PubMed  Google Scholar 

  6. Feng C, He Z, Cai B, et al. Non-invasive prenatal diagnosis of chromosomal aneuploidies and microdeletion syndrome using fetal nucleated red blood cells isolated by nanostructure microchips. Theranostics. 2018;8:1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durrant L, McDowall K, Holmes R, et al. Non-invasive prenatal diagnosis by isolation of both trophoblasts and fetal nucleated red blood cells from the peripheral blood of pregnant women. Br J Obstet Gynaecol. 1996;103:219–22.

    Article  CAS  PubMed  Google Scholar 

  8. Geifman-Holtzman O, Makhlouf F, Kaufman L, et al. The clinical utility of fetal cell sorting to determine prenatally fetal E/e or e/e Rh genotype from peripheral maternal blood. Am J Obstet Gynecol. 2000;183:462–8.

    Article  CAS  PubMed  Google Scholar 

  9. Parano E, Falcidia E, Grillo A, et al. Noninvasive prenatal diagnosis of chromosomal aneuploidies by isolation and analysis of fetal cells from maternal blood. Am J Med Genet. 2001;101:262–7.

    Article  CAS  PubMed  Google Scholar 

  10. Choolani M, O’Donoghue K, Talbert D, et al. Characterization of first trimester fetal erythroblasts for non-invasive prenatal diagnosis. Mol Hum Reprod. 2003;9:227–35.

    Article  PubMed  Google Scholar 

  11. Huang R, Barber TA, Schmidt MA, et al. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn. 2008;28:892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hromadnikova I, Karamanov S, Houbova B, et al. Non-invasive fetal sex determination on fetal erythroblasts from the maternal circulation using fluorescence in situ hybridisation. Fetal Diagn Ther. 2002;17:193–9.

    Article  PubMed  Google Scholar 

  13. Al-Mufti R, Hambley H, Farzaneh F, et al. Distribution of fetal and embryonic hemoglobins in fetal erythroblasts enriched from maternal blood. Haematologica. 2001;86:357–62.

    CAS  PubMed  Google Scholar 

  14. Ziegler BL, Muller R, Valtieri M, et al. Unicellular-unilineage erythropoietic cultures: molecular analysis of regulatory gene expression at sibling cell level. Blood. 1999;93:3355–68.

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann S, Hollmann C, Stachelhaus SA. Unique monoclonal antibodies specifically bind surface structures on human fetal erythroid blood cells. Exp Cell Res. 2013;319:2700–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wei X, Ao Z, Cheng L, et al. Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology. 2018;29:434001.

    Article  PubMed  CAS  Google Scholar 

  17. Badeau M, Lindsay C, Blais J, et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst Rev. 2017;11:CD011767.

    PubMed  Google Scholar 

  18. Gil M, Accurti V, Santacruz B, et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol. 2017;50:302–14.

    Article  CAS  PubMed  Google Scholar 

  19. Mardy A, Wapner RJ. Confined placental mosaicism and its impact on confirmation of NIPT results. Am J Med Genet C Semin Med Genet. 2016;172:118–22.

    Article  PubMed  Google Scholar 

  20. Hayata K, Hiramatsu Y, Masuyama H, et al. Discrepancy between non-invasive prenatal genetic testing (NIPT) and amniotic chromosomal test due to placental mosaicism: a case report and literature review. Acta Med Okayama. 2017;71:181–5.

    CAS  PubMed  Google Scholar 

  21. Srinivasan A, Bianchi DW, Huang H, et al. Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma. Am J Hum Genet. 2013;92:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peters D, Chu T, Yatsenko SA, et al. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N Engl J Med. 2011;365:1847–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin AH, Peng CF, Zhao X, et al. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA. Proc Natl Acad Sci U S A. 2015;112:14670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vossaert L, Wang Q, Salman R, et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat Diagn. 2018;38:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo YM, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2:61ra91.

    Article  CAS  PubMed  Google Scholar 

  27. Lun FM, Chiu RW, Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54:1664–72.

    Article  CAS  PubMed  Google Scholar 

  28. Lun FM, Tsui NB, Chan KC, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105:19920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bustamante-Aragones A, Rodriguez de Alba M, Gonzalez-Gonzalez C, et al. Foetal sex determination in maternal blood from the seventh week of gestation and its role in diagnosing haemophilia in the foetuses of female carriers. Haemophilia. 2008;14:593–8.

    Article  CAS  PubMed  Google Scholar 

  30. Barrett AN, McDonnell TC, Chan KC, et al. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem. 2012;58:1026–32.

    Article  CAS  PubMed  Google Scholar 

  31. Forest MG, Morel Y, David M. Prenatal treatment of congenital adrenal hyperplasia. Trends Endocrinol Metab. 1998;9:284–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hyett JA, Gardener G, Stojilkovic-Mikic T, et al. Reduction in diagnostic and therapeutic interventions by non-invasive determination of fetal sex in early pregnancy. Prenat Diagn. 2005;25:1111–6.

    Article  PubMed  Google Scholar 

  33. Shah VC, Smart V. Human chromosome Y and SRY. Cell Biol Int. 1996;20:3–6.

    Article  CAS  PubMed  Google Scholar 

  34. Lo YM, Patel P, Sampietro M, et al. Detection of single-copy fetal DNA sequence from maternal blood. Lancet. 1990;335:1463–4.

    Article  CAS  PubMed  Google Scholar 

  35. Stanghellini I, Bertorelli R, Capone L, et al. Quantitation of fetal DNA in maternal serum during the first trimester of pregnancy by the use of a DAZ repetitive probe. Mol Hum Reprod. 2006;12:587–91.

    Article  CAS  PubMed  Google Scholar 

  36. Devaney SA, Palomaki GE, Scott JA, et al. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA. 2011;306:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Breveglieri G, D'Aversa E, Finotti A, et al. Non-invasive prenatal testing using fetal DNA. In: Mol Diagn Ther; 2019.

    Google Scholar 

  38. Neofytou M, Brison N, Van den Bogaert K, et al. Maternal liver transplant: another cause of discordant fetal sex determination using cell-free DNA. Prenat Diagn. 2018;38:148–50.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Chen Y, Tian F, et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin Chem. 2014;60:251–9.

    Article  PubMed  CAS  Google Scholar 

  40. Chim S, Tong YK, Chiu RW, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A. 2005;102:14753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan KC, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006;52:2211–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bellido ML, Radpour R, Lapaire O, et al. MALDI-TOF mass array analysis of RASSF1A and SERPINB5 methylation patterns in human placenta and plasma. Biol Reprod. 2010;82:745–50.

    Article  CAS  PubMed  Google Scholar 

  43. Tang NL, Leung TN, Zhang J, et al. Detection of fetal-derived paternally inherited X-chromosome polymorphisms in maternal plasma. Clin Chem. 1999;45:2033–5.

    Article  CAS  PubMed  Google Scholar 

  44. Deans Z, Clarke AJ, Newson AJ. For your interest? The ethical acceptability of using non-invasive prenatal testing to test ‘purely for information’. Bioethics. 2015;29:19–25.

    Article  PubMed  Google Scholar 

  45. Bowman-Smart H, Savulescu J, Mand C, et al. Is it better not to know certain things? Views of women who have undergone non-invasive prenatal testing on its possible future applications. J Med Ethics. 2019;45:231–8.

    Article  PubMed  Google Scholar 

  46. Urbaniak SJ, Greiss MA. RhD haemolytic disease of the fetus and the newborn. Blood Rev. 2000;14:44–61.

    Article  CAS  PubMed  Google Scholar 

  47. Murray NA, Roberts IA. Haemolytic disease of the newborn. Arch Dis Child Fetal Neonatal Ed. 2007;92:F83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Clausen FB, Steffensen R, Christiansen M, et al. Routine noninvasive prenatal screening for fetal RHD in plasma of RhD-negative pregnant women-2 years of screening experience from Denmark. Prenat Diagn. 2014;34:1000–5.

    Article  PubMed  Google Scholar 

  49. Thurik F, AitSoussan A, Bossers B, et al. Analysis of false-positive results of fetal RHD typing in a national screening program reveals vanishing twins as potential cause for discrepancy. Prenat Diagn. 2015;35:754–60.

    Article  CAS  PubMed  Google Scholar 

  50. Yang H, Llewellyn A, Walker R, et al. High-throughput, non-invasive prenatal testing for fetal rhesus D status in RhD-negative women: a systematic review and meta-analysis. BMC Med. 2019;17:37.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Amant F, Verheecke M, Wlodarska I, et al. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol. 2015;1:814–9.

    Article  PubMed  Google Scholar 

  52. Cohen PA, Flowers N, Tong S, et al. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening. BMC Med. 2016;14:126.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kulasingam V, Diamandis EP. Genomic profiling for copy number changes in plasma of ovarian cancer patients: a new era for cancer diagnostics? BMC Med. 2016;14:186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cai YH, Yao GY, Chen LJ, et al. The combining effects of cell-free circulating tumor DNA of breast tumor to the noninvasive prenatal testing results: a simulating investigation. DNA Cell Biol. 2018;37:626–33.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar N, Singh AK. Cell-free fetal DNA: a novel biomarker for early prediction of pre-eclampsia and other obstetric complications. Curr Hypertens Rev. 2019;15:57–63.

    Article  CAS  PubMed  Google Scholar 

  56. Rolnik DL, da Silva Costa F, Lee TJ, et al. Association between fetal fraction on cell-free DNA testing and first-trimester markers for pre-eclampsia. Ultrasound Obstet Gynecol. 2018;52:722–7.

    Article  CAS  PubMed  Google Scholar 

  57. Eche S, Mackraj I, Moodley J. Circulating fetal and total cell-free DNA, and sHLA-G in black South African women with gestational hypertension and pre-eclampsia. Hypertens Pregnancy. 2017;36:295–301.

    Article  CAS  PubMed  Google Scholar 

  58. Kim HJ, Kim SY, Lim JH, et al. Quantification and application of potential epigenetic markers in maternal plasma of pregnancies with hypertensive disorders. Int J Mol Sci. 2015;16:29875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salvianti F, Inversetti A, Smid M, et al. Prospective evaluation of RASSF1A cell-free DNA as a biomarker of pre-eclampsia. Placenta. 2015;36:996–1001.

    Article  CAS  PubMed  Google Scholar 

  60. Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem. 2019;294:5386–95.

    Article  CAS  PubMed  Google Scholar 

  61. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25:365–451.

    Article  CAS  PubMed  Google Scholar 

  62. Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:1–22.

    Article  Google Scholar 

  63. Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51:440–50.

    CAS  PubMed  Google Scholar 

  64. Skladal D, Halliday J, Thorburn DRJB. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain. 2003;126:1905–12.

    Article  PubMed  Google Scholar 

  65. Darin N, Oldfors A, Moslemi AR, et al. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA abnormalities. Ann Neurol. 2001;49:377–83.

    Article  CAS  PubMed  Google Scholar 

  66. Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cerutti R, Pirinen E, Lamperti C, et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet. 2012;21:526–35.

    Article  CAS  PubMed  Google Scholar 

  69. Garone C, Garcia-Diaz B, Emmanuele V, et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med. 2014;6:1016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferrari M, Jain IH, Goldberger O, et al. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci U S A. 2017;114:E4241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sheffield AM, Smith RJJ. The epidemiology of deafness. Cold Spring Harb Perspect Med. 2019;9:a033258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamasoba T, Lin FR, Someya S, et al. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res. 2013;303:30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith RJ, Bale JF Jr, White KRJTL. Sensorineural hearing loss in children. Lancet. 2005;365:879–90.

    Article  PubMed  Google Scholar 

  74. He X, Zhu X, Wang X, et al. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. PLoS One. 2013;8 https://doi.org/10.1371/journal.pone.0081490.

  75. Ostergaard E, Hansen FJ, Sorensen N, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain. 2007;130:853–61.

    Article  PubMed  Google Scholar 

  76. Duran J, Martinez A, Adler EJB. Cardiovascular manifestations of mitochondrial disease. Biology. 2019;8:34.

    Article  CAS  PubMed Central  Google Scholar 

  77. Kearns TP. External ophthalmoplegia, pigmentary degeneration of the retina, and cardiomyopathy: a newly recognized syndrome. Trans Am Ophthalmol Soc. 1965;63:559.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kornblum C, Broicher R, Walther E, et al. Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns–Sayre syndrome. J Neurol. 2005;252:1101–7.

    Article  CAS  PubMed  Google Scholar 

  79. El-Hattab AW, Adesina AM, Jones J, et al. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116:4–12.

    Article  CAS  PubMed  Google Scholar 

  80. Sproule DM, Kaufmann PJ. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Am N Y Acad Sci. 2008;1142:133–58.

    Article  CAS  Google Scholar 

  81. Fukuhara N, Tokiguchi S, Shirakawa K, et al. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci. 1980;47:117–33.

    Article  CAS  PubMed  Google Scholar 

  82. Mancuso M, Filosto M, Mootha VK, et al. A novel mitochondrial tRNAPhe mutation causes MERRF syndrome. Neurology. 2004;62:2119–21.

    Article  CAS  PubMed  Google Scholar 

  83. Blakely EL, Trip SA, Swalwell H, et al. A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch Neurol. 2009;66:399–402.

    Article  PubMed  Google Scholar 

  84. Li R, Greinwald J, Yang L, et al. Molecular analysis of the mitochondrial 12S rRNA and tRNASer (UCN) genes in paediatric subjects with non-syndromic hearing loss. J Med Genet. 2004;41:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Z, Li R, Chen J, et al. Mutational analysis of the mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside-induced and non-syndromic hearing loss. Hum Genet. 2005;117:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elstner M, Schmidt C, Zingler VC, et al. Mitochondrial 12S rRNA susceptibility mutations in aminoglycoside-associated and idiopathic bilateral vestibulopathy. Biochem Biophys Res Commun. 2008;377:379–83.

    Article  CAS  PubMed  Google Scholar 

  87. Thyagarajan D, Bressman S, Bruno C, et al. A novel mitochondrial 12SrRNA point mutation in parkinsonism, deafness, and neuropathy. Ann Neurol. 2000;48:730–6.

    Article  CAS  PubMed  Google Scholar 

  88. Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet. 2004;74:139–52.

    Article  CAS  PubMed  Google Scholar 

  89. Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic–induced and non–syndromic deafness. Nat Genet. 1993;4:289.

    Article  CAS  PubMed  Google Scholar 

  90. Kokotas H, Grigoriadou M, Korres GS, et al. Detection of deafness-causing mutations in the Greek mitochondrial genome. Dis Markers. 2011;30:283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin L, Yang A, Zhu Y, et al. Mitochondrial tRNASer(UCN) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun. 2007;361:133–9.

    Article  CAS  PubMed  Google Scholar 

  92. Yelverton JC, Arnos K, Xia X-J, et al. The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol Head Neck Surg. 2013;148:1017–22.

    Article  PubMed  Google Scholar 

  93. Caria H, Matos T, Oliveira-Soares R, et al. A7445G mtDNA mutation present in a Portuguese family exhibiting hereditary deafness and palmoplantar keratoderma. J Eur Acad Dermatol Venereol. 2005;19:455–8.

    Article  CAS  PubMed  Google Scholar 

  94. Sevior KB, Hatamochi A, Stewart IA, et al. Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet. 1998;75:179–85.

    Article  CAS  PubMed  Google Scholar 

  95. Martin L, Toutain A, Guillen C, et al. Inherited palmoplantar keratoderma and sensorineural deafness associated with A7445G point mutation in the mitochondrial genome. Br J Dermatol. 2000;143:876–83.

    Article  CAS  PubMed  Google Scholar 

  96. Ensink RJ, Verhoeven K, Marres HA, et al. Early-onset sensorineural hearing loss and late-onset neurologic complaints caused by a mitochondrial mutation at position 7472. Arch Otolaryngol Head Neck Surg. 1998;124:886–91.

    Article  CAS  PubMed  Google Scholar 

  97. Tang X, Li R, Zheng J, et al. Maternally inherited hearing loss is associated with the novel mitochondrial tRNA Ser(UCN) 7505T>C mutation in a Han Chinese family. Mol Genet Metab. 2010;100:57–64.

    Article  CAS  PubMed  Google Scholar 

  98. Hutchin TP, Parker MJ, Young ID, et al. A novel mutation in the mitochondrial tRNA(Ser(UCN)) gene in a family with non-syndromic sensorineural hearing impairment. J Med Genet. 2000;37:692–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. del Castillo FJ, Villamar M, Moreno-Pelayo MA, et al. Maternally inherited non-syndromic hearing impairment in a Spanish family with the 7510T>C mutation in the mitochondrial tRNA(Ser(UCN)) gene. J Med Genet. 2002;39:e82.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sue C, Tanji K, Hadjigeorgiou G, et al. Maternally inherited hearing loss in a large kindred with a novel T7511C mutation in the mitochondrial DNA tRNASer (UCN). Gene. 1999;52:1905.

    CAS  Google Scholar 

  101. Li R, Ishikawa K, Deng JH, et al. Maternally inherited nonsyndromic hearing loss is associated with the T7511C mutation in the mitochondrial tRNASerUCN gene in a Japanese family. Biochem Biophys Res Commun. 2005;328:32–7.

    Article  CAS  PubMed  Google Scholar 

  102. Jaksch M, Klopstock T, Kurlemann G, et al. Progressive myoclonus epilepsy and mitochondrial myopathy associated with mutations in the tRNASer (UCN). Gene. 1998;44:635–40.

    CAS  Google Scholar 

  103. Van den Ouweland J, Lemkes H, Ruitenbeek W, et al. Mutation in mitochondrial tRNA Leu (UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1:368.

    Article  PubMed  Google Scholar 

  104. Finsterer J, JJIjopo F. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol. 2005;69:621–47.

    Article  PubMed  Google Scholar 

  105. Hino N, Suzuki T, Yasukawa T, et al. The pathogenic A4269G mutation in human mitochondrial tRNA(Ile) alters the T-stem structure and decreases the binding affinity for elongation factor Tu. Genes Cells. 2004;9:243–52.

    Article  CAS  PubMed  Google Scholar 

  106. Chinnery PF, Taylor GA, Howell N, et al. Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology. 2000;55:302–4.

    Article  CAS  PubMed  Google Scholar 

  107. Chu Q, Luo X, Zhan X, et al. Female genetic distribution bias in mitochondrial genome observed in Parkinson’s disease patients in northern China. Sci Rep. 2015;5:17170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan X, Wang X, Wang Z, et al. Maternally transmitted late-onset non-syndromic deafness is associated with the novel heteroplasmic T12201C mutation in the mitochondrial tRNAHis gene. J Med Genet. 2011;48:682–90.

    Article  CAS  PubMed  Google Scholar 

  109. Bravo O, Ballana E, Estivill XJB, et al. Cochlear alterations in deaf and unaffected subjects carrying the deafness-associated A1555G mutation in the mitochondrial 12S rRNA. Gene. 2006;344:511–6.

    CAS  Google Scholar 

  110. Lu J, Li Z, Zhu Y, et al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion. 2010;10:380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iwanicka-Pronicka K, Pollak A, Skorka A, et al. Audio profiles in mitochondrial deafness m.1555A>G and m.3243A>G show distinct differences. Med Sci Monit. 2015;21:694–700.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhu Y, Huang S, Kang D, et al. Analysis of the heteroplasmy level and transmitted features in hearing-loss pedigrees with mitochondrial 12S rRNA A1555G mutation. BMC Genet. 2014;15:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Thorburn DR, Dahl HH. Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet. 2001;106:102–14.

    Article  CAS  PubMed  Google Scholar 

  114. Baruch S, Adamson GD, Cohen J, et al. Genetic testing of embryos: a critical need for data. Reprod Biomed Online. 2005;11:667–70.

    Article  PubMed  Google Scholar 

  115. Harper JC, Sengupta SB. Preimplantation genetic diagnosis: state of the art 2011. Hum Genet. 2012;131:175–86.

    Article  PubMed  Google Scholar 

  116. Bek T. Regional morphology and pathophysiology of retinal vascular disease. Prog Retin Eye Res. 2013;36:247–59.

    Article  CAS  PubMed  Google Scholar 

  117. Yang H, Xiao X, Li S, et al. Novel TSPAN12 mutations in patients with familial exudative vitreoretinopathy and their associated phenotypes. Mol Vis. 2011;17:1128–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoyt CS, Taylor D. Pediatric ophthalmology and strabismus. Philadelphia: W.B. Saunders Ltd; 2012.

    Google Scholar 

  119. Binderup ML, Galanakis M, Budtz-Jorgensen E, et al. Prevalence, birth incidence, and penetrance of von Hippel-Lindau disease (vHL) in Denmark. Eur J Hum Genet. 2017;25:301–7.

    Article  CAS  PubMed  Google Scholar 

  120. Rednam SP, Erez A, Druker H, et al. Von Hippel-Lindau and hereditary Pheochromocytoma/Paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:68–75.

    Article  CAS  Google Scholar 

  121. Ferreri AJ, Illerhaus G, Zucca E, et al. Flows and flaws in primary central nervous system lymphoma. Nat Rev Clin Oncol. 2010;7:125–6.

    Article  Google Scholar 

  122. Adam MP, Ardinger HH, Pagon RA, et al. GeneReviews® [Internet]. In: For GeneReviews authors and prospective authors. Seattle, WA: University of Washington, Seattle, 1993-2019; 2013 Jun 3.

    Google Scholar 

  123. Chen X, Sanfilippo CJ, Nagiel A, et al. Early detection of retinal hemangioblastomas in von Hippel-Lindau disease using ultra-widefield fluorescein angiography. Retina. 2018;38:748–54.

    Article  PubMed  Google Scholar 

  124. McNeill A, Rattenberry E, Barber R, et al. Genotype-phenotype correlations in VHL exon deletions. Am J Med Genet A. 2009;149a:2147–51.

    Article  CAS  PubMed  Google Scholar 

  125. Wright KW, Spiegel PH. Pediatric ophthalmology and strabismus. New York: Springer; 2003. isbn:0-387-95478-3.

    Book  Google Scholar 

  126. Krauss T, Ferrara AM, Links TP, et al. Preventive medicine of von Hippel-Lindau disease-associated pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2018;25:783–93.

    Article  CAS  PubMed  Google Scholar 

  127. Tagami M, Kusuhara S, Honda S, et al. Rapid regression of retinal hemorrhage and neovascularization in a case of familial exudative vitreoretinopathy treated with intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol. 2008;246:1787–9.

    Article  CAS  PubMed  Google Scholar 

  128. Nielsen SM, Rhodes L, Blanco I, et al. Von Hippel-Lindau disease: genetics and role of genetic counseling in a multiple Neoplasia syndrome. J Clin Oncol. 2016;34:2172–81.

    Article  CAS  PubMed  Google Scholar 

  129. DiFrancesco JC, Novara F, Zuffardi O, et al. TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. 2015;36:323–30.

    Article  PubMed  Google Scholar 

  130. Di Donato I, Banchi S, Federico A, et al. Adult-onset genetic Leukoencephalopathies. Focus on the more recently defined forms. Curr Mol Med. 2014;14:944–58.

    Article  PubMed  CAS  Google Scholar 

  131. Rice GI, Rodero MP, Crow YJ. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015;35:235–43.

    Article  CAS  PubMed  Google Scholar 

  132. Stam AH, Kothari PH, Shaikh A, et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016;139:2909–22.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yamamoto Y, Craggs L, Baumann M, et al. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 2011;37:94–113.

    Article  CAS  PubMed  Google Scholar 

  134. Gruver AM, Schoenfield L, Coleman JF, et al. Novel ophthalmic pathology in an autopsy case of autosomal dominant retinal vasculopathy with cerebral leukodystrophy. J Neuroophthalmol. 2011;31:20–4.

    Article  PubMed  Google Scholar 

  135. Rao FQ, Cai XB, Cheng F, et al. Mutations in LRP5,FZD4, TSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci. 2017;58:2623–9.

    Article  CAS  PubMed  Google Scholar 

  136. Soong BW, Liao YC, Tu PH, et al. A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. J Chin Med Assoc. 2013;76:319–24.

    Article  CAS  PubMed  Google Scholar 

  137. Monroy-Jaramillo N, Ceron A, Leon E, et al. Phenotypic variability in a Mexican Mestizo family with retinal vasculopathy with cerebral leukodystrophy and TREX1 mutation p.V235Gfs*6. Rev Invest Clin. 2018;70:68–75.

    PubMed  Google Scholar 

  138. Robitaille JM, Gillett RM, LeBlanc MA, et al. Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations. JAMA Ophthalmol. 2014;132:1393–9.

    Article  PubMed  Google Scholar 

  139. Panagiotou ES, Sanjurjo Soriano C, Poulter JA, et al. Defects in the cell signaling mediator beta-catenin cause the retinal vascular condition FEVR. Am J Hum Genet. 2017;100:960–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology. 1998;105:1015–23.

    Article  CAS  PubMed  Google Scholar 

  141. Henry CR, Sisk RA, Tzu JH, et al. Long-term follow-up of intravitreal bevacizumab for the treatment of pediatric retinal and choroidal diseases. J AAPOS. 2015;19:541–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Lyu or Jian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 People's Medical Publishing House Co. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, C., Lou, X., Lyu, J., Wang, J., Xu, Y. (2021). Prenatal Diagnosis and Preimplantation Genetic Diagnosis. In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1037-0_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1036-3

  • Online ISBN: 978-981-16-1037-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics