Skip to main content

Next-Generation Sequencing (NGS)

  • Chapter
  • First Online:
Clinical Molecular Diagnostics

Abstract

Next-generation sequencing (NGS) is an established method of simultaneously sequencing millions of fragments of DNA (or complementary DNA). In recent years, NGS has been rapidly evolved and adopted in the clinical laboratory. NGS was originally developed from pyrophosphate sequencing principle. At present, more mature application platforms are various types of Ion Torrent, Illumina, and Complete Genomics (CG). Since its first appearance more than 10 years ago, NGS technology had become increasingly mature. One of the characteristics of high-throughput sequencing technology is the fact that it has many steps and complicated procedures; any problem in any part will affect the accuracy of the test results and then affect the clinical decision-making. That means it plays an important role in precision medicine. Because high-throughput sequencing can detect numerous target genes and their mutation sites at one time, it has high sensitivity and specificity and has both qualitative and quantitative detection. Moreover, the cost of detection is lower than that of the same number of genes and loci detection. Therefore, it has broad clinical and scientific application prospects in many biomedical scientific fields, such as noninvasive prenatal screening (NIPS), mutation of tumor genes, genetic diseases, preimplantation genetic screening (PGS), preimplantation genetic diagnosis (PGD), pathogenic microorganisms, and metagenomics. As with any new technology, NGS used in the clinical laboratory is constantly evolving at the same time. This chapter is a comprehensive overview of NGS technology, including its basic principle, technology development, as well as its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges. BioTechniques. 2014;56:61–4. 66, 68, passim

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res. 2014;322:12–20.

    Article  PubMed  CAS  Google Scholar 

  3. Podnar J, Deiderick H, Hunicke-Smith S. Next-generation sequencing fragment library construction. Curr Protoc Mol Biol 107. 2014;7(17):11–6.

    Google Scholar 

  4. Linnarsson S. Recent advances in DNA sequencing methods - general principles of sample preparation. Exp Cell Res. 2010;316:1339–43.

    Article  CAS  PubMed  Google Scholar 

  5. Sultan M, Amstislavskiy V, Risch T, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics. 2014;15:675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chen Z, Duan X. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol Biol. 2011;733:93–103.

    Article  CAS  PubMed  Google Scholar 

  7. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8

    Google Scholar 

  8. Adiconis X, Borges-Rivera D, Satija R, et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods. 2013;10:623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations. BioEssays. 2010;32:524–36.

    Article  CAS  PubMed  Google Scholar 

  10. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  CAS  PubMed  Google Scholar 

  11. Hui P. Next generation sequencing: chemistry, technology and applications. Top Curr Chem. 2014;336:1–18.

    CAS  PubMed  Google Scholar 

  12. Korlach J, Marks PJ, Cicero RL, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105:1176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munroe DJ, Harris TJ. Third-generation sequencing fireworks at Marco Island. Nat Biotechnol. 2010;28:426–8.

    Article  CAS  PubMed  Google Scholar 

  14. Holley RW, Everett GA, Madison JT, et al. Nucleotide sequences in the yeast alanine transfer ribonucleic acid. J Biol Chem. 1965;240:2122–8.

    Article  CAS  PubMed  Google Scholar 

  15. Wu R, Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1971;57:491–511.

    Article  CAS  PubMed  Google Scholar 

  16. Xue Y, Wang Y, Shen H. Ray Wu, fifth business or father of DNA sequencing? Protein Cell. 2016;7:467–70.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gilbert W, Maxam A. The nucleotide sequence of the lac operator. Proc Natl Acad Sci U S A. 1973;70:3581–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441–8.

    Article  CAS  PubMed  Google Scholar 

  19. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265:687–95.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadian A, Ehn M, Hober S. Pyrosequencing: history, biochemistry and future. Clin Chim Acta. 2006;363:83–94.

    Article  CAS  PubMed  Google Scholar 

  23. Sanger F, Coulson AR, Barrell BG, et al. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980;143:161–78.

    Article  CAS  PubMed  Google Scholar 

  24. Sears LE, Moran LS, Kissinger C, et al. Circum vent thermal cycle sequencing and alternative manual and automated DNA sequencing protocols using the highly thermostable VentR (exo-) DNA polymerase. BioTechniques. 1992;13:626–33.

    CAS  PubMed  Google Scholar 

  25. Smith LM, Sanders JZ, Kaiser RJ, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser RJ, MacKellar SL, Vinayak RS, et al. Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res. 1989;17:6087–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30:418–26.

    Article  PubMed  CAS  Google Scholar 

  28. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(363):365.

    Google Scholar 

  30. Turcatti G, Romieu A, Fedurco M, et al. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 2008;36:e25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Drmanac R, Sparks AB, Callow MJ, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327:78–81.

    Article  CAS  PubMed  Google Scholar 

  32. Levene MJ, Korlach J, Turner SW, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299:682–6.

    Article  CAS  PubMed  Google Scholar 

  33. Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  CAS  PubMed  Google Scholar 

  34. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53.

    Article  CAS  PubMed  Google Scholar 

  35. Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol. 2016;34:518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal A, Sayres LC, Cho MK, et al. Commercial landscape of noninvasive prenatal testing in the United States. Prenat Diagn. 2013;33:521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105:16266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105:20458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bianchi DW, Platt LD, Goldberg JD, et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol. 2012;119:890–901.

    Article  CAS  PubMed  Google Scholar 

  41. Sparks AB, Wang ET, Struble CA, et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn. 2012;32:3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peters D, Chu T, Yatsenko SA, et al. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome. N Engl J Med. 2011;365:1847–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jensen TJ, Dzakula Z, Deciu C, et al. Detection of microdeletion 22q11.2 in a fetus by next-generation sequencing of maternal plasma. Clin Chem. 2012;58:1148–51.

    Article  CAS  PubMed  Google Scholar 

  44. Alfarawati S, Fragouli E, Colls P, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.

    Article  PubMed  Google Scholar 

  45. Hodes-Wertz B, Grifo J, Ghadir S, et al. Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril. 2012;98:675–80.

    Article  PubMed  Google Scholar 

  46. Rubio C, Simon C, Vidal F, et al. Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum Reprod. 2003;18:182–8.

    Article  CAS  PubMed  Google Scholar 

  47. Voullaire L, Wilton L, McBain J, et al. Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod. 2002;8:1035–41.

    Article  CAS  PubMed  Google Scholar 

  48. Munne S, Sandalinas M, Magli C, et al. Increased rate of aneuploid embryos in young women with previous aneuploid conceptions. Prenat Diagn. 2004;24:638–43.

    Article  PubMed  Google Scholar 

  49. Tan Y, Yin X, Zhang S, et al. Clinical outcome of preimplantation genetic diagnosis and screening using next generation sequencing. Gigascience. 2014;3:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Treff NR, Fedick A, Tao X, et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril 99. 2013;e1376:1377–84.

    Article  CAS  Google Scholar 

  51. Wells D, Kaur K, Grifo J, et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet. 2014;51:553–62.

    Article  CAS  PubMed  Google Scholar 

  52. Yin X, Tan K, Vajta G, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:69.

    Article  PubMed  CAS  Google Scholar 

  53. Fiorentino F, Biricik A, Bono S, et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101:1375–82.

    Article  CAS  PubMed  Google Scholar 

  54. Fiorentino F, Bono S, Biricik A, et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29:2802–13.

    Article  CAS  PubMed  Google Scholar 

  55. Yang Z, Lin J, Zhang J, et al. Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study. BMC Med Genet. 2015;8:30.

    Google Scholar 

  56. Collins FS, Hamburg MA. First FDA authorization for next-generation sequencer. N Engl J Med. 2013;369:2369–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hui WW, Jiang P, Tong YK, et al. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin Chem. 2017;63:513–24.

    Article  CAS  PubMed  Google Scholar 

  58. Gorlin RJ. Nevoid basal cell carcinoma syndrome. Dermatol Clin. 1995;13:113–25.

    Article  CAS  PubMed  Google Scholar 

  59. Roth CK, Puttbrese A, Ottley C. Thalassemia syndromes in pregnancy. Nurs Womens Health. 2016;20:415–20.

    Article  PubMed  Google Scholar 

  60. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Angastiniotis M, Eleftheriou A, Galanello R, et al. In nd & J Old (Eds.), Prevention of Thalassaemias and Other Haemoglobin Disorders: Volume 1: Principles. Thalassaemia International Federation (c) 2013 Thalassaemia International Federation., Nicosia, Cyprus; 2013.

    Google Scholar 

  62. Xiong L, Barrett AN, Hua R, et al. Non-invasive prenatal diagnostic testing for beta-thalassaemia using cell-free fetal DNA and next generation sequencing. Prenat Diagn. 2015;35:258–65.

    Article  CAS  PubMed  Google Scholar 

  63. Tan M, Lu S, Wu LS, et al. Application of next generation sequencing to screen the neonatal thalassemia genes. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23:1404–9.

    CAS  PubMed  Google Scholar 

  64. Papasavva T, van Ijcken WF, Kockx CE, et al. Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to beta-thalassaemia. Eur J Hum Genet. 2013;21:1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He JX, Jiang YF. The progress and prospect of application of genetic testing technology-based gene detection technology in the diagnosis and treatment of hereditary cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2017;51:772–6.

    CAS  PubMed  Google Scholar 

  67. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  CAS  PubMed  Google Scholar 

  68. Tzanikou E, Lianidou E. The potential of ctDNA analysis in breast cancer. Crit Rev Clin Lab Sci. 2020;57:54–72.

    Article  CAS  PubMed  Google Scholar 

  69. Li BT, Stephens D, Chaft JE, et al. Liquid biopsy for ctDNA to revolutionize the care of patients with early stage lung cancers. Annals of Translational Medicine. 2017;5:479.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garcia C, Lyon L, Littell RD, et al. Comparison of risk management strategies between women testing positive for a BRCA variant of unknown significance and women with known BRCA deleterious mutations. Genet Med. 2014;16:896–902.

    Article  CAS  PubMed  Google Scholar 

  72. Kwon JS, Daniels MS, Sun CC, et al. Preventing future cancers by testing women with ovarian cancer for BRCA mutations. J Clin Oncol. 2010;28:675–82.

    Article  PubMed  Google Scholar 

  73. Michils G, Hollants S, Dehaspe L, et al. Molecular analysis of the breast cancer genes BRCA1 and BRCA2 using amplicon-based massive parallel pyrosequencing. J Mol Diagn. 2012;14:623–30.

    Article  CAS  PubMed  Google Scholar 

  74. Chan M, Ji SM, Yeo ZX, et al. Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn. 2012;14:602–12.

    Article  CAS  PubMed  Google Scholar 

  75. Watson IR, Takahashi K, Futreal PA, et al. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep. 2015;33:3–18.

    Article  CAS  PubMed  Google Scholar 

  77. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–11.

    Article  CAS  PubMed  Google Scholar 

  78. Chin L, Hahn WC, Getz G, et al. Making sense of cancer genomic data. Genes Dev. 2011;25:534–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu TJ, Schriml LM, Chen QR, et al. Generating a focused view of disease ontology cancer terms for pan-cancer data integration and analysis. Database (Oxford). 2015;2015:bav032.

    Article  Google Scholar 

  80. Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  81. Tops BB, Normanno N, Kurth H, et al. Development of a semi-conductor sequencing-based panel for genotyping of colon and lung cancer by the Onconetwork consortium. BMC Cancer. 2015;15:26.

    Article  PubMed  PubMed Central  Google Scholar 

  82. D'Haene N, Le Mercier M, De Neve N, et al. Clinical validation of targeted next generation sequencing for colon and Lung cancers. PLoS One. 2015;10:e0138245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    Article  CAS  PubMed  Google Scholar 

  84. Tsao AS, Scagliotti GV, Bunn PA Jr, et al. Scientific advances in lung cancer 2015. J Thorac Oncol. 2016;11:613–38.

    Article  PubMed  Google Scholar 

  85. Diaz Z, Aguilar-Mahecha A, Paquet ER, et al. Next-generation biobanking of metastases to enable multidimensional molecular profiling in personalized medicine. Mod Pathol. 2013;26:1413–24.

    Article  PubMed  Google Scholar 

  86. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32:177–95.

    PubMed  PubMed Central  Google Scholar 

  87. Chan BA, Hughes BG. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015;4:36–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rothschild SI. Targeted therapies in non-small cell lung cancer-beyond EGFR and ALK. Cancers (Basel). 2015;7:930–49.

    Article  CAS  Google Scholar 

  89. Zer A, Leighl N. Promising targets and current clinical trials in metastatic non-squamous NSCLC. Front Oncol. 2014;4:329.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Joseph L. The clinical utility of molecular genetic cancer profiling. Expert Rev Mol Diagn. 2016;16:827–38.

    Article  CAS  PubMed  Google Scholar 

  91. Oxnard GR, Paweletz CP, Kuang Y, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oellerich M, Schutz E, Beck J, et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017;54:205–18.

    Article  CAS  PubMed  Google Scholar 

  93. Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American pathologists. J Mol Diagn. 2017;19:341–65.

    Article  PubMed  Google Scholar 

  94. Shahsiah R, DeKoning J, Samie S, et al. Validation of a next generation sequencing panel for detection of hotspot cancer mutations in a clinical laboratory. Pathol Res Pract. 2017;213:98–105.

    Article  CAS  PubMed  Google Scholar 

  95. Bush K. Proliferation and significance of clinically relevant beta-lactamases. Ann N Y Acad Sci. 2013;1277:84–90.

    Article  CAS  PubMed  Google Scholar 

  96. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8:747–63.

    Article  CAS  PubMed  Google Scholar 

  97. Liu W, Li L, Khan MA, et al. Popular molecular markers in bacteria. Mol Gen Mikrobiol Virusol. 2012:14–7.

    Google Scholar 

  98. Junemann S, Sedlazeck FJ, Prior K, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31:294–6.

    Article  PubMed  CAS  Google Scholar 

  99. Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.

    Article  CAS  PubMed  Google Scholar 

  100. Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370:2408–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31:e00020–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Harris SR, Cartwright EJP, Török ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deurenberg RH, Bathoorn E, Chlebowicz MA, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16–24.

    Article  CAS  PubMed  Google Scholar 

  104. Burggren WW. Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype 'washout'. J Exp Biol. 2015;218:80–7.

    Article  PubMed  Google Scholar 

  105. Goddard ME, Whitelaw E. The use of epigenetic phenomena for the improvement of sheep and cattle. Front Genet. 2014;5:247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hawkins RD, Hon GC, Lee LK, et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell. 2010;6:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002;12:198–209.

    Article  CAS  PubMed  Google Scholar 

  108. Widschwendter M, Fiegl H, Egle D, et al. Epigenetic stem cell signature in cancer. Nat Genet. 2007;39:157–8.

    Article  CAS  PubMed  Google Scholar 

  109. Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet. 2010;11:191–203.

    Article  CAS  PubMed  Google Scholar 

  110. Masser DR, Stanford DR, Freeman WM. Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp. 2015;

    Google Scholar 

  111. Rosati E, Dowds CM, Liaskou E, et al. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 2017;17:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Friedensohn S, Khan TA, Reddy ST. Advanced methodologies in high-throughput sequencing of immune repertoires. Trends Biotechnol. 2017;35:203–14.

    Article  CAS  PubMed  Google Scholar 

  113. Fahnrich A, Krebbel M, Decker N, et al. ClonoCalc and ClonoPlot: immune repertoire analysis from raw files to publication figures with graphical user interface. BMC Bioinformatics. 2017;18:164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Galson JD, Clutterbuck EA, Truck J, et al. BCR repertoire sequencing: different patterns of B-cell activation after two meningococcal vaccines. Immunol Cell Biol. 2015;93:885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Six A, Mariotti-Ferrandiz ME, Chaara W, et al. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol. 2013;4:413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  117. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    Article  CAS  PubMed  Google Scholar 

  118. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Quinn EM, McManus R. Quality control and analysis of NGS RNA sequencing data. Methods Mol Biol. 2015;1326:217–32.

    Article  CAS  PubMed  Google Scholar 

  120. Smith RM, Webb A, Papp AC, et al. Whole transcriptome RNA-Seq allelic expression in human brain. BMC Genomics. 2013;14:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heap GA, Yang JH, Downes K, et al. Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Hum Mol Genet. 2010;19:122–34.

    Article  CAS  PubMed  Google Scholar 

  122. Sun W, Hu Y. eQTL Mapping Using RNA-seq Data. Stat Biosci. 2013;5:198–219.

    Article  PubMed  Google Scholar 

  123. Park E, Williams B, Wold BJ, et al. RNA editing in the human ENCODE RNA-seq data. Genome Res. 2012;22:1626–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao J, Ohsumi TK, Kung JT, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40:939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22:2008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rabbani B, Nakaoka H, Akhondzadeh S, et al. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Mol BioSyst. 2016;12:1818–30.

    Article  CAS  PubMed  Google Scholar 

  128. Ustek D, Sirma S, Gumus E, et al. A genome-wide analysis of lentivector integration sites using targeted sequence capture and next generation sequencing technology. Infection Genetics and Evolution. 2012;12:1349–54.

    Article  CAS  Google Scholar 

  129. Ciuffi A, Barr SD. Identification of HIV integration sites in infected host genomic DNA. Methods. 2011;53:39–46.

    Article  CAS  PubMed  Google Scholar 

  130. Arens A, Appelt JU, Bartholomae CC, et al. Bioinformatic clonality analysis of next-generation sequencing-derived viral vector integration sites. Hum Gene Ther Methods. 2012;23:111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schopman NC, Willemsen M, Liu YP, et al. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res. 2012;40:414–27.

    Article  CAS  PubMed  Google Scholar 

  132. Lefebvre G, Desfarges S, Uyttebroeck F, et al. Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell. J Virol. 2011;85:6205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cesana D, Sgualdino J, Rudilosso L, et al. Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. J Clin Invest. 2012;122:1667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 People's Medical Publishing House Co. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, M. (2021). Next-Generation Sequencing (NGS). In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1037-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1036-3

  • Online ISBN: 978-981-16-1037-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics