Skip to main content

Efficient NoSQL Graph Database for Storage and Access of Health Data

  • Conference paper
  • First Online:
Computer Communication, Networking and IoT

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 197))

  • 576 Accesses

Abstract

Graph data models are mostly used for storage and access of large, unstructured real-life data generated from real-life applications. The graph data model can be implemented by NoSQL graph databases. In this paper, eight well-known NoSQL graph databases are compared to study their properties. After rigorous review of different research works which are focused on different parametric measures of storage and access, only the best three NoSQL graph databases, Neo4j, OrientDB and ArangoDB, are chosen. The efficiency of these three graph databases is compared based on searching or traversing and querying operations on the databases for storage and access. A particular type of graph, i.e., disease-symptom graph database has been used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartholomew, D.: Sql vs. nosql. Linux J. 2010, 195 (2010)

    Google Scholar 

  2. Bernardino, J., Furtado, P., Abramova, V.: A performance overview. open j. databases. Open J. Databases, 1

    Google Scholar 

  3. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2012)

    Google Scholar 

  4. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

    Article  Google Scholar 

  5. Kristina, C., Michael, D.: MongoDB: The Definitive Guide, 1st edn. O’Reilly Media, Inc. (2010)

    Google Scholar 

  6. Chris Anderson, J., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to Relax, 1st edn. O’Reilly Media, Inc. (2010)

    Google Scholar 

  7. Sivasubramanian, S.: Amazon dynamodb: a seamlessly scalable non-relational database service. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12, pp. 729–730, New York, ACM (2012)

    Google Scholar 

  8. In http://basho.com/products/riak-kv/

  9. Oh, G., Seo, C., Mayuram, R., Kee, Y.-S., Lee, S.-W.: Share interface in flash storage for relational and nosql databases. In: Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pp. 343–354. ACM, New York (2016)

    Google Scholar 

  10. Webber, J.: A programmatic introduction to neo4j. In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, pp. 217–218. ACM, New York (2012)

    Google Scholar 

  11. Koloniari, G., Pitoura, E.: Transaction management for cloud-based graph databases. In: Revised Selected Papers of the First International Workshop on Algorithmic Aspects of Cloud Computing, vol. 9511, ALGOCLOUD 2015, pp. 99–113, Springer, Berlin, Heidelberg (2016)

    Google Scholar 

  12. In https://www.arangodb.com/

  13. In https://orientdb.com/

  14. Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: a system for effective web service discovery. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12 Companion, pages 441–444. ACM, New York (2012)

    Google Scholar 

  15. In https://franz.com/agraph/allegrograph/

  16. In http://hypergraphdb.org/

  17. Martínez-Bazan, N., Gómez-Villamor, S., Escalé-Claveras, F.: Dex: a high-performance graph database management system. In: 2011 IEEE 27th International Conference on Data Engineering Workshops, pp. 124–127 (2011)

    Google Scholar 

  18. In https://db-engines.com/en/

  19. In http://nosql-database.org/

  20. Angles, R.: The property graph database model. In: Proceedings of the 12th Alberto Mendelzon International Workshop on Foundations of Data Management, Cali, Colombia, May 21–25, 2018 (2018)

    Google Scholar 

  21. Kolomičenko, V., Svoboda, M., Mlýnková, I.H.: Experimental comparison of graph databases. In: Proceedings of International Conference on Information Integration and Web-based Applications & #38; Services, IIWAS ’13, pp. 115, 115–115:124. ACM, New York (2013)

    Google Scholar 

  22. In http://code.google.com/p/graphdb-bench/

  23. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S., Martínez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on the hpc scalable graph analysis benchmark. In: Shen, H.T., Pei, J., Tamer Özsu, M., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J., (eds) Web-Age Information Management, pp. 37–48, Berlin, Heidelberg (2010)

    Google Scholar 

  24. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over graph databases. In: 2012 IEEE 28th International Conference on Data Engineering Workshops, pp. 186–189 (2012)

    Google Scholar 

  25. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In: 2013 International Conference on Social Computing, pp. 708–715 (2013)

    Google Scholar 

  26. Lissandrini, M., Brugnara, M., Velegrakis, Y.: Beyond macrobenchmarks: Microbenchmark-based graph database evaluation. Proc. VLDB Endow. 12(4), 390–403 (2018)

    Article  Google Scholar 

  27. Mathew, A.B., Madhu Kumar, S.D.: Analysis of data management and query handling in social networks using nosql databases. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 800–806 (2015)

    Google Scholar 

  28. Mondal, S., Mukherjee, N.: Mobile-assisted remote healthcare delivery. In: 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 630–635 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mondal, S., Mukherjee, N. (2021). Efficient NoSQL Graph Database for Storage and Access of Health Data. In: Bhateja, V., Satapathy, S.C., Travieso-Gonzalez, C.M., Flores-Fuentes, W. (eds) Computer Communication, Networking and IoT. Lecture Notes in Networks and Systems, vol 197. Springer, Singapore. https://doi.org/10.1007/978-981-16-0980-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0980-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0979-4

  • Online ISBN: 978-981-16-0980-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics