Skip to main content

Reliability Index of a Multi-story Building Considering the Uncertainties of Monitoring System

  • Conference paper
  • First Online:
Structural Health Monitoring and Engineering Structures

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 148))

Abstract

This paper aims to study the effects of measuring errors during the process of structural health monitoring (SHM) on the reliability index (RI) of a building. A six-story plane frame model of a flexible long-span building is studied in which defects are randomly occurred both in the superstructure and its foundation. The response of the building due to different damage patterns would be collected, analyzed, and the outputs as raw data sending to the measuring the system would be deliberately changed to obtain a perturbed data set of signals. The RI of the system would be computed using the first-order reliability method (FORM), and the effects of modeling and measuring errors (noises) on the index would be examined. These uncertainties both in aleatoric aspect (load, section, limit stress and quality of material) and epistemic (modeling device instrumentation and signal transformation method) aspect affect remarkably the reliability analysis. Findings are the order of importance of each factor involved, the percentage of contribution to the RI and an approach for computing the RI of the structural system using the Taylor series expansion. Some recommendations for the measuring procedure, the variation in frequency of the response, and the change in the performance of the building concerning various kinds of defects are studied and the RI in terms of different damage patterns and variables (i.e., kinds of errors) are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etebu, E., Shafiee, M.: Reliability analysis of structural health monitoring. In: Haugen et al. (Eds.) Safety and Reliability—Safe Societies in a Changing World, pp. 2243–2247, ISBN 978-0-8153-8682-7. Taylor & Francis, London (2014)

    Google Scholar 

  2. Taylor, J.R.: An Introduction to Uncertainty Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Mill Valley (1982)

    MATH  Google Scholar 

  3. Bernard, E.S., Xu, G.G.: Statistical distribution of fiber-reinforced concrete beam test data. J. ASTM Int. 4(3) (2007). https://doi.org/10.1520/jai100774

  4. Bandara, R.P.: Damage Identification and Condition Assessment of Building Structures using Frequency Response Function and Neural Networks. PhD Thesis in Queensland University of Technology, pp. 1–275 (2013)

    Google Scholar 

  5. Maru, M.B., Lee, D., Cham, G., Park, S.: Beam deflection monitoring based on genetic algorithm using lidar data. J. Sens. 20, 2144. https://doi.org/10.3390/s20072144

  6. Sarkisian, M., Mathias, N., et al.: Effective Stiffness Modeling of Shear Walls for Seismic Analysis of High-Rise Structures. In: Book chapter of the SEAOC Proceedings for Convention (2003)

    Google Scholar 

  7. Alberto Escobar J., Fernando Fierro, Roberto Gomez.: Proceedings of the 13th World Conference on Earthquake Engineering. Paper 2117. In Vancouver B.C, Canada (2004)

    Google Scholar 

  8. Duong, H.T., Khuong, V.H.: Design of experiments using Taguchi’s method. J. Sci. Educ. 19–29 (2018). ISSN 2354-0567

    Google Scholar 

  9. Hao, G., Liang, X., Zhang, S.: The new approximation calculation method for the first order reliability. J. Appl. Math. 4, 505–509 (2013). http://dx.doi.org/10.4236/am.2013.43075

  10. Saleh, F., Supriyadi, B., Suhendro, B., Tran, D.: Damage detection in non-prismatic reinforced concrete beams using curvature mode shapes. In: SIF2004 Structural Integrity and Fracture. http://eprint.uq.edu.au/archive/00000836. Last accessed (2016)

  11. Gomes, W.J.S.: Reliability analysis of reinforced concrete beams using finite element models. Conference paper. In: Faria, P.O., Lopez, R.H., Miguel, L.F.F., Gomes, W.J.S., Noronha M. (eds.) Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering. ABMEC, Florianópolis, SC, Brazil, 5–8 Nov 2017

    Google Scholar 

  12. Faber, M.H., Kubler, O., Fontana, M., Knobloch, M.: Failure Consequences and Reliability Acceptance Criteria for Exceptional Building Structure. Research collection, Swiss Federal Institute of Technology, IBK Bericht Nr 285, Jul (2004). ISBN 3-7281-2976-3, https://www.doi.org/10.3929/ethz-a-004807495

  13. Telgarsky, R.: Dominant frequency extraction. Research paper. Homepage, https://www.researchgate.net/publication/237000139. Uploaded 2013/1216

  14. Sap2000 User Manual. https://www.civilax.org/sap2000-manual/

  15. Tham, D.H.: Some statistical techniques applied to engineering mechanics problems. Viet Nam J. Sci. Technol. 57(6A) (2019). https://doi.org/10.15625/2525-2518/57/14006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tham H. Duong .

Editor information

Editors and Affiliations

Appendix

Appendix

Partial derivatives of the performance functions and variances with respect to specific variable, reinforced concrete structure:

1. Flexural Beams: \(G(X_{i} ) = 0.85f_{y}^{'} (A_{s} - A'_{s} )\left( {d - \frac{kd}{2}} \right) - \left( {q\frac{{L_{s}^{2} }}{8}} \right)\); \(\frac{\partial G}{{\partial L_{s} }} = q\frac{{L_{s} }}{4}\)\(\frac{\partial G}{{\partial f'_{y} }} = 0.85(A_{s} - A'_{s} )\left( {d - \frac{kd}{2}} \right);\) \(\frac{\partial G}{\partial d} = f_{y}^{'} (A_{s} - A'_{s} )\left( {1 - \frac{k}{2}} \right)\); \(\frac{\partial G}{\partial q} = - \frac{{L_{s}^{2} }}{8}\); \(\sigma_{X} = \left[ {\left( {\frac{\partial G}{{\partial f'_{y} }}} \right)^{2} \cdot Var\left( {f'_{y} + \left( {\frac{\partial G}{\partial d}} \right)} \right)^{2} \cdot Var\left( {d \, + \, \left( {\frac{\partial G}{\partial q}} \right)^{2} } \right) \cdot Var\left( q \right) + \left( {\frac{\partial G}{{\partial L_{s} }}} \right)^{2} \cdot Var\left( {L_{s} } \right)} \right]^{0. 5}\)

2. Eccentric Compression Columns (ACI 318): \(H(X_{i} ) = \frac{{P_{u} }}{{\varphi P_{n} }} + \frac{{M_{u} }}{{\varphi M_{n} }} - 1 \le 0\)

\(P_{n} = 0.8[0.85f_{c}^{'} (A_{g} - A_{s} ) + (A_{s} f'_{y} )\); \(M_{n} = 0.85f_{c}^{'} W\) where Pu chosen w.r.t Max Mu \(\frac{\partial H}{{\partial f'_{c} }} = - \frac{{P.A_{b} }}{{\varphi (A_{b} f'_{c} + A_{s} f'_{y} )^{2} }};\)\(\frac{\partial H}{\partial d} = - \frac{{bf'_{c} P}}{{\varphi (A_{b} f'_{c} + A_{s} f'_{y} )^{2} }} - \frac{M}{{\varphi \left( {0.85 \cdot f'_{y} \cdot A_{s} \left( {1 - \frac{k}{2}} \right)d} \right)^{2} }}\)\(\frac{\partial H}{{\partial f'_{y} }} = - \frac{{P \cdot A_{s} }}{{\varphi (A_{b} f'_{c} + A_{s} f'_{y} )^{2} }} - \frac{{0.85 \cdot M \cdot A_{s} \left( {d - \frac{kd}{2}} \right)}}{{\varphi \left( {0.85 \cdot f'_{y} \cdot A_{s} \left( {1 - \frac{k}{2}} \right)d} \right)^{2} }};\)

\(\sigma_{X} = \left[ {\left( {\frac{\partial H}{{\partial f'_{c} }}} \right)^{2} \cdot Var\left( {f'_{c} } \right) \, + \left( {\frac{\partial H}{{\partial f'_{y} }}} \right)^{2} \cdot Var\left( {f'_{y} } \right) \, + \left( {\frac{\partial H}{\partial d}} \right)^{2} \cdot Var\left( d \right)} \right]^{0. 5}\)

3. Horizontal Displacement: \(I(X_{i} ) = \Delta_{\text{Limit}} - \Delta = \frac{H}{500} - \Delta \ge 0\)

4. Vertical Deflection of beam: \(J(X_{i} ) = f_{\text{Limit}} - f = \frac{{L_{s} }}{250} - \frac{{5qL_{s}^{4} }}{{384EI_{cr} }} \ge 0\)

\(\frac{\partial J}{{\partial L_{s} }} = \frac{1}{250} - \frac{{20qL_{s}^{3} }}{{384EI_{cr} }} = \frac{1}{250} - \frac{{qL_{s}^{3} }}{{19.2EI_{cr} }};\) \(\frac{\partial J}{\partial q} = - \frac{{5qL_{s}^{4} }}{{384EI_{cr} }};\) \(\sigma_{X} = \left[ {\left( {\frac{\partial J}{{\partial L_{s} }}} \right)^{2} \cdot Var\left( {L_{s} } \right) \, + \left( {\frac{\partial J}{\partial q}} \right)^{2} \cdot Var\left( q \right)} \right]^{0.5}\)

5. Settlement: \(K(X_{i} ) = s_{\text{Limit}} - \frac{N}{k} \ge 0;\) \(\frac{\partial K}{\partial N} = - \frac{1}{{k^{2} }};\frac{\partial K}{\partial k} = - N\)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duong, T.H. (2021). Reliability Index of a Multi-story Building Considering the Uncertainties of Monitoring System. In: Bui, T.Q., Cuong, L.T., Khatir, S. (eds) Structural Health Monitoring and Engineering Structures. Lecture Notes in Civil Engineering, vol 148. Springer, Singapore. https://doi.org/10.1007/978-981-16-0945-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0945-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0944-2

  • Online ISBN: 978-981-16-0945-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics