Skip to main content

Endospheric Microbiome-Assisted Alteration in the Metabolomic Profiling of Host towards Abiotic Stress Mitigation

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 493 Accesses

Abstract

Abiotic stress such as salinity, low or high temperatures, alkalinity, drought, and other environmental extremes may be defined as a negative effect of non-living factors on a living thing thus inhibiting plant function. Abiotic stress tends to negatively impact growth, development, seed quality, and yield of the crop and other plants. To overcome this problem, various researches are being carried out in genetic engineering to develop plant varieties that are tolerant against abiotic stress. An alternative strategy has also been observed in the present scenario, where microbial endophytes play a key role in plant survival under abiotic stress. Endophytes that live internally in plant tissues for a part of their life cycle are known to regulate homeostasis in plants during stressed environmental conditions. This potential of endophytes to promote plant growth during abiotic stress has been explored with several in vitro studies. Several mechanisms that are employed by endophytes to overcome abiotic stress include accumulation of stress responsible molecules, secondary metabolites, increased production of phytohormones, and production of antioxidant enzymes. The tools of omics can be used further to provide detailed insight into how endophytic diversity influences the metabolomics of hosts during abiotic stresses. This chapter mainly emphasizes on the endophyte microbiome and its role in altering the mechanisms of a host to mitigate abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agtuca BJ et al (2020) In-situ metabolomic analysis of Setaria viridis roots colonized by beneficial endophytic bacteria. Mol Plant-Microbe Interact 33:272–283

    Article  CAS  PubMed  Google Scholar 

  • Andrea P-A, Paul B (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  Google Scholar 

  • Arbona V, Iglesias DJ, Talon M, Cadenas AG (2009) Plant phenotype demarcation using non targeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem 57:7338–7347

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Manzi M, de Ollas C, Cadenas AG (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12(1):31–38

    Google Scholar 

  • Bacon C, Porter J, Robbins J, Luttrell E (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsch A, Carvalho HG, Cullimore JV, Niehaus K (2006a) GC MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J Biotechnol 127:79–83

    Google Scholar 

  • Barsch A, Tellstrom V, Patschkowski T, Kuster H, Niehaus K (2006b) Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant-Microbe Interact 19:998–1013

    Article  CAS  PubMed  Google Scholar 

  • Bisht N, Mishra SK, Chauhan PS (2020) Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int J Biol Macromol 143:937–951

    Article  CAS  PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62(2):595–603

    Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian S, Kristina U, Dietrich E, Wolfram W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro—grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact 22:1032–1037

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Bot 87:455–462

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S, Chauhan PS, Nautiyal CS (2016) Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488. Plant Signal Behav 11:e1113363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS (2020) Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek 9:1–7

    Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Emwas A-H et al (2019) NMR spectroscopy for metabolomics research. Metabolites 9:123

    Article  CAS  PubMed Central  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65(4):477–505

    Article  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouda AH, Hassan SE, Eid AM, Ewais EE (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60(1):95–104

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van O, verbeek LS, van E, lsas JD (2008) Properties of bacterialendophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hassan SE, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci 11(3):262–270

    Article  CAS  Google Scholar 

  • Jan R, Khan MA, Asaf S, Lee IJ, Kim KM (2019a) Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plan Theory 8(10):363

    Google Scholar 

  • Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ (2019b) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19(1):1

    Google Scholar 

  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal N, Viegelmann CV, Clements CJ, Edrada-Ebel R (2017) Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae. Planta Med 83(6):565–573

    Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46(2):440–447

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):3

    Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Google Scholar 

  • Khan AL et al (2016a) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan Z et al (2016b) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47

    Article  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes. Springer, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Div 60:137–151

    Article  Google Scholar 

  • Li WK (2005) Endophytes and natural medicines. Chin J Nat Med 3(4):193–199

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85

    Article  CAS  PubMed  Google Scholar 

  • Maciá-Vicente JG et al (2018) Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol 20:1253–1270

    Article  PubMed  Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80(4):1180–1186

    Article  Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267

    Google Scholar 

  • Mishra SK, Khan MH, Misra S, Kant VK, Khare P, Srivastava S, Chauhan PS (2017) Characterization of Pseudomonasspp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Van Leeuwenhoek 110:253–270

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S, Lehri A, Chauhan PS (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt-tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Dixit VK, Mishra SK, Chauhan PS (2019) Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccushuakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol 69:419–434

    Article  CAS  Google Scholar 

  • Mookherjee A, Singh S, Maiti MK (2018) Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 200:355–369

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Mitter B, ReichenauerTG WK, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp, FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Papik J, Folkmanova M, Majorova MP, Suman J, Uhlik O (2020) The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotech Adv 44:107614

    Article  CAS  Google Scholar 

  • Partida-Martinez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters AF (1991) Field and culture studies of Streblonema macrocystis sp. nov.(Ectocapales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycologia 30(4):365–377

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, pp 179–197

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 11:28

    Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13(1):63–77

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Scherlach K, Hertweck C (2018) Mediators of mutualistic microbe-microbe interactions. Nat Prod Rep 35(4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–687

    Article  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Microbial endophytes: a continuum of interactions with plants. Marcel Dekker Inc, New York, pp 3–29

    Google Scholar 

  • Sukumar P, Legue V, Vayssieres A, Martin F, Tuskan GA, Kalluri UC (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant microorganisms’ interactions. Plant Cell Environ 36:909–919

    Article  CAS  PubMed  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):1195–1202

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tawfike AF et al (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B 1106:71–83

    Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6(3):e17968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi J, Varma A, Pudake RN (2017) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1

    Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15(3):271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vysotskaya LB, Korobova AV, Veselov SY, Dodd IC, Kudoyarova GR (2009) ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient-deprived durum wheat. Funct Plant Biol 36(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hu T, Jiao Y, Wei J, Cao K (2009) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinereal Pers. Front Agric China 3(3):247–252

    Google Scholar 

  • Wei J et al (2020) Comparative metabolomics revealed the potential antitumor characteristics of four endophytic fungi of Brassica rapa L. ACS Omega 5:5939–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen CY (2004) Recent advances and issues on the endophyte. Chinese J Ecol 23(2):86–91

    Google Scholar 

  • Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS (2004) Phialocephala sphaeroides sp.nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607–617

    Google Scholar 

  • Xu L, Wang A, Wang J, Wei Q, Zhang W (2017) Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J 5(3):251–258

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director CSIR-National Botanical Research Institute for providing facilities and support during the study. This work is supported by the CSIR-Network project (MLP0048; OLP 0109) funded by Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kar, S., Jaiswal, P., Misra, S., Chauhan, P.S. (2021). Endospheric Microbiome-Assisted Alteration in the Metabolomic Profiling of Host towards Abiotic Stress Mitigation. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_14

Download citation

Publish with us

Policies and ethics