Skip to main content

An App-Based IoT-NFC Controlled Remote Access Security Through Cryptographic Algorithm

  • Conference paper
  • First Online:
Information and Communication Technology for Competitive Strategies (ICTCS 2020)

Abstract

In the twenty-first century, a human being is passing through the world with generosity of technology and most of its the systems are being operated by automated or remote access control. However, sensor technology is already playing a vital role to control the smart home, smart office, etc. However, it is about to beyond a smart city. Remote access control is a part of the leading technology. An app-based innovative remote access control framework is adding an extra security to make this technology more convenient, secured and illustrate the usability of a person along with an authenticated system of the executive. NFC is used as a communication technology, and a microcontroller camera is also used for detection. An authentication process drives through a smartphone application over the IoT framework. A definitive objective of this paper is to ensure the security of remote access control, notification to the comer and admin, accessibility, usability and permissibility to enter the premises. In order to maintain the integrity and the confidentiality of data cryptographic, techniques like computational 512 bits hash functions are considered and encrypt the hashed data once AES-192 is used. The additional part of this paper is to measure the performance of an employee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Md. A.A. Khan, M.A. Kabir, Comparison among shortrange wireless networks: bluetooth. Zigbee, & Wi-Fi,DIU J. Sci. Technol. 11 (1) (2016)

    Google Scholar 

  2. S. Gupta, V. Malhotra, S.N. Singh, Securing IOT driven remote helathcare data through blockchain. Int. J. Eng. Sci. Adv. Res. 5(2), 24–27 (2019)

    Google Scholar 

  3. M. Hemaanand, P.R. Chowdary, S. Darshan, S. Jagadeeswaran, R. Karthika, L. Parameswaran, Advanced driver assistance system using computer vision and IOT, in Computational Vision and Bio-Inspired Computing ed. by S. Smys , J. Tavares, V. Balas, A. Iliyasu. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol 1108 (Springer, Cham, 2020)

    Google Scholar 

  4. I. Ha, Security and usability improvement on a digital door lock system based on internet of things. Int. J. Secur. Its Appl. 9(8), 45–54 (2015)

    Google Scholar 

  5. A.A. Khan, D. Ali, M. Hanif, D.A.K.M. Haque, C. Debnath, D.R. Jabiullah, A detailed exploration of usability statistics and application rating based on wireless protocols. J. Adv. Comput. Eng. Technol. 6(1), 9–18 (2020)

    Google Scholar 

  6. G.Z. Islam et al., Achieving robust global bandwidth along with bypassing geo-restriction for internet users. Indonesian J. Electr. Eng. Comput. Sci. 18(1), 112–123 (2020)

    Google Scholar 

  7. A. Choudhary, S. Jamwal, D. Goyal, R.K. Dang, S. Sehgal, Condition monitoring of induction motor using Internet of Things (IoT), in Recent Advances in Mechanical Engineering 2020 (Springer, Singapore), pp. 353–365

    Google Scholar 

  8. E. Anaya, J. Patel, P. Shah, V. Shah, Y. Cheng, A performance study on cryptographic algorithms for IoT devices, in Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy 16 Mar 2020 (pp. 159–161)

    Google Scholar 

  9. P. Martins, L. Sousa, The role of non-positional arithmetic on efficient emerging cryptographic algorithms. IEEE Access. 24(8), 59533–59549 (2020 Mar)

    Google Scholar 

  10. M. Sahani, C. Nanda, A.K. Sahu, B. Pattnaik, Web-based online embedded door access control and home security system based on face recognition, in 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015] (IEEE, 2015), pp. 1–6

    Google Scholar 

  11. M. Ahtsham, H.Y. Yan, U. Ali, IoT based door lock surveillance system using cryptographic algorithms, in 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC) (IEEE, 2019), pp. 448–453

    Google Scholar 

  12. G. Sowjanya, S. Nagaraju, Design and implementation of door access control and security system based on IOT, in 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2 (IEEE, 2016), pp. 1–4

    Google Scholar 

  13. A. Nag, J. N. Nikhilendra, M. Kalmath, IOT based door access control using face recognition, in 2018 3rd International Conference for Convergence in Technology (I2CT) (IEEE, 2018), pp. 1–3

    Google Scholar 

  14. S. Nath, P. Banerjee, R.N. Biswas, S.K. Mitra, M.K. Naskar, Arduino based door unlocking system with real time control, in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I) (IEEE, 2016), pp. 358–362

    Google Scholar 

  15. O. Doh, I. Ha, A digital door lock system for the internet of things with improved security and usability. Adv. Sci. Technol. Lett. 109, 33–38 (2015)

    Article  Google Scholar 

  16. Md. A.A. Khan, M.H. Ali, A.K.M.F. Haque, Machine learning-based driving license management through wireless ad-hoc networks using NFC. Int. J. Recent Technol. Eng. (2020)

    Google Scholar 

  17. A.A. James, K.T. Sarika, A novel high-speed IoT based crypto lock using AES-128 and SHA-512. Stud. Indian Place Names 40(74), 9–15 (27 Mar 2020)

    Google Scholar 

  18. R. Satti, S. Ejaz, M. Arshad, A smart visitors’ notification system with automatic secure door lock using mobile communication technology. Int. J. Comput. Commun. Syst. Eng. 2, 39–44 (2015)

    Google Scholar 

  19. S. Ghoshal, P. Bandyopadhyay, S. Roy, M. Baneree, A Journey from MD5 to SHA-3, in Trends in Communication, Cloud, and Big Data 2020 (Springer, Singapore, 2020), pp. 107–112

    Google Scholar 

  20. I. Cicek, K.A. Al, SHA-512 based Wireless authentication scheme for smart battery management systems. Int. J. Smart Grid-IjSmartGrid. 4(1), 11–16 (2020 Mar 25)

    Google Scholar 

  21. P. Singh, S.K. Saroj, A secure data dynamics and public auditing scheme for cloud storage, in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 6 Mar 2020 (IEEE, 2020), pp. 695–700

    Google Scholar 

  22. V. Grover, An efficient brute force attack handling techniques for server virtualization (30 Mar 2020). Available at SSRN 3564447

    Google Scholar 

  23. A. Vuppala, R.S. Roshan, S. Nawaz, J.V. Ravindra, An efficient optimization and secured triple data encryption standard using enhanced key scheduling algorithm. Procedia Comput. Sci. 1(171), 1054–1063 (2020 Jan)

    Google Scholar 

  24. Y. Park, P. Sthapit, J. Pyun, Smart digital door lock for the home automation. Proc. TENCON 2009, 1–5 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abbas Ali Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.A.A., Ali, M.H., Haque, A.K.M.F., Debnath, C., Jabiullah, M.I., Rahman, M.R. (2021). An App-Based IoT-NFC Controlled Remote Access Security Through Cryptographic Algorithm. In: Kaiser, M.S., Xie, J., Rathore, V.S. (eds) Information and Communication Technology for Competitive Strategies (ICTCS 2020). Lecture Notes in Networks and Systems, vol 190. Springer, Singapore. https://doi.org/10.1007/978-981-16-0882-7_9

Download citation

Publish with us

Policies and ethics