Skip to main content

Goldfish as an Experimental Model

  • 255 Accesses

Abstract

Goldfish have been used as experimental animals in various biological fields due to ease of handling and breeding, which derives from physiological and developmental characteristics. This chapter introduces goldfish characteristic features, focusing on genomic background, in addition to physiological and embryological characteristics. It is known that the phylogenetic relationship between goldfish and related species is ambiguous since interspecies hybrids can easily occur. Moreover, allotetraploidization (genome duplication with species hybridization) occurred in the common ancestor of goldfish and common carp, according to whole-genome sequencing analyses. This genome duplication event seems to be significant for allowing goldfish to become animals with “easy handling and breeding,” which contributes to their use as ornamental and research animals. On the other hand, the rise of zebrafish molecular developmental genetics might have caused goldfish developmental biology to fade, partially due to the complicated genomic background of goldfish. Although several physiologists and neuroscientists still prefer to use goldfish as their experimental animals, fewer developmental biologists currently choose goldfish over zebrafish as a research model. Taking into account the above goldfish characteristics and current status of research, significant points related to the use of goldfish as a model system for evolutionary developmental biology are summarized, as follows. First, unlike the random mutagenesis-derived zebrafish, domestication-derived goldfish were subject to artificial selection. Second, in comparison with some other domesticated vertebrate species, the observation of embryonic goldfish is quite easy. These two exclusive characteristics of goldfish allow us to investigate how artificial selection and the developmental process are related.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-0850-6_2
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-0850-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8

References

  • Abe G, Lee S-H, Chang M, Liu S-C, Tsai H-Y, Ota KG (2014) The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun 5:3360. https://doi.org/10.1038/ncomms4360

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abe G, Lee S-H, Li I-J, Chang C-J, Tamura K, Ota KG (2016) Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection. Sci Rep 6:26838. https://doi.org/10.1038/srep26838

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Abe G, Li I-J, Lee S-H, Ota KG (2018) A novel allele of the goldfish chdB gene: functional evaluation and evolutionary considerations. J Exp Zool B Mol Dev Evol 330(6–7):372–383. https://doi.org/10.1002/jez.b.22831

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141. https://doi.org/10.1016/j.pbi.2005.01.001

    CAS  CrossRef  PubMed  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100(8):4649–4654. https://doi.org/10.1073/pnas.0630618100

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy J, Nicholas TJ, Neff MW (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci U S A 107(3):1160–1165. https://doi.org/10.1073/pnas.0909918107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Allee WC, Finkel AJ, Hoskins WH (1940) The growth of goldfish in homotypically conditioned water; a population study in mass physiology. J Exp Zool 84(3):417–443. https://doi.org/10.1002/jez.1400840306

    CAS  CrossRef  Google Scholar 

  • Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13(20):2713–2724. https://doi.org/10.1101/gad.13.20.2713

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S (2018) Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 257:13–28. https://doi.org/10.1016/j.ygcen.2017.02.001

  • Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, Knight J, Mani P, Martin R, Moxon ST, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Schaper HB, Schaper K, Shao X, Singer A, Sprague J, Sprunger B, Van Slyke C, Westerfield M (2011) ZFIN: enhancements and updates to the zebrafish model organism database. Nucleic Acids Res 39(Suppl 1):822–829. https://doi.org/10.1093/nar/gkq1077

    CAS  CrossRef  Google Scholar 

  • Buggs RJA, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE (2014) The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans R Soc B Biol Sci 369(1648):20130354. https://doi.org/10.1098/rstb.2013.0354

    CrossRef  Google Scholar 

  • Cao H, Yu F, Zhao Y, Zhang X, Tai J, Lee J, Darehzereshki A, Bersohn M, Lien C-L, Chi NC, Tai Y-C, Hsiai TK (2014) Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol 6(8):789. https://doi.org/10.1039/C4IB00052H

    CAS  CrossRef  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2013) From DNA to diversity: molecular genetics and the evolution of animal design. Wiley, Hoboken, NJ

    Google Scholar 

  • Chen Z, Omori Y, Koren S, Shirokiya T, Kuroda T, Miyamoto A, Wada H, Fujiyama A, Toyoda A, Zhang S (2019) De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication. Sci Adv 5(6):eaav0547. https://doi.org/10.1126/sciadv.aav0547

  • Copp G, Tarkan S, Godard M, Edmonds N, Wesley K (2010) Preliminary assessment of feral goldfish impacts on ponds, with particular reference to native crucian carp. Aquat Invasions 5(4):413–422. https://doi.org/10.3391/ai.2010.5.4.11

    CrossRef  Google Scholar 

  • Cronly-Dillon JR (1964) Units sensitive to direction of movement in goldfish optic tectum. Nature 203(4941):214–215. https://doi.org/10.1038/203214a0

    CAS  CrossRef  PubMed  Google Scholar 

  • Crozier WJ, Stier TB (1925) Critical increment for opercular breathing rhythm of the goldfish. J Gen Physiol 7(6):699

    CAS  CrossRef  Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication by Charles Darwin: 1, vol 2. J. Murray, London

    Google Scholar 

  • De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126(11–12):925–941. https://doi.org/10.1016/j.mod.2009.08.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Delomas TA, Gomelsky B, Anil A, Schneider KJ, Warner JL (2017) Spontaneous polyploidy, gynogenesis and androgenesis in second generation (F2) koi Cyprinus carpio × goldfish Carassius auratus hybrids. J Fish Biol 90(1):80–92. https://doi.org/10.1111/jfb.13157

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461. https://doi.org/10.1146/annurev.genet.42.110807.091524

    CAS  CrossRef  PubMed  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development (Cambridge, England) 123:37–46. PMID: 9007227

    CAS  CrossRef  Google Scholar 

  • Eaton RC, Lavender WA, Wieland CM (1981) Identification of Mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. J Comp Physiol 144(4):521–531. https://doi.org/10.1007/BF01326837

    CrossRef  Google Scholar 

  • Echteler SM (1984) Connections of the auditory midbrain in a teleost fish,Cyprinus carpio. J Comp Neurol 230(4):536–551. https://doi.org/10.1002/cne.902300405

    CAS  CrossRef  PubMed  Google Scholar 

  • Fagernes CE, Stensløkken K-O, Røhr ÅK, Berenbrink M, Ellefsen S, Nilsson GE (2017) Extreme anoxia tolerance in crucian carp and goldfish through neofunctionalization of duplicated genes creating a new ethanol-producing pyruvate decarboxylase pathway. Sci Rep 7(1):7884. https://doi.org/10.1038/s41598-017-07385-4

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186(1):184–193. https://doi.org/10.1111/j.1469-8137.2009.03107.x

    CAS  CrossRef  PubMed  Google Scholar 

  • Ford T, Beitinger TL (2005) Temperature tolerance in the goldfish, Carassius auratus. J Thermal Biol 30(2):147–152. https://doi.org/10.1016/j.jtherbio.2004.09.004

    CrossRef  Google Scholar 

  • Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20(8):R371–R381. https://doi.org/10.1016/j.cub.2010.02.039

    CAS  CrossRef  PubMed  Google Scholar 

  • Fujita I (1987) Electrophysiology of the terminal nerve in cyprinids. Ann N Y Acad Sci 519:69–79. https://doi.org/10.1111/j.1749-6632.1987.tb36287.x

    CrossRef  Google Scholar 

  • Gestrin P, Sterling P (1977) Anatomy and physiology of goldfish oculomotor system. II. Firing patterns of neurons in abducens nucleus and surrounding medulla and their relation to eye movements. J Neurophysiol 40(3):573–588

    CAS  CrossRef  Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin S-Y, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31(2):135–140. https://doi.org/10.1038/ng896

    CAS  CrossRef  PubMed  Google Scholar 

  • Greenwood PH (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull Am Mus Nat Hist 131:341–455

    Google Scholar 

  • Gregory TR (2021) Animal genome size database. http://www.genomesize.com

  • Griffiths AJF, Wessler SR, Carroll SB, Doebley J (2012) Introduction to genetic analysis, 10th edn. W.H. Freeman, New York

    Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development (Cambridge, England) 123:1–36. PMID: 9007226

    CAS  CrossRef  Google Scholar 

  • Halas D, Lovejoy N, Mandrak NE (2018) Undetected diversity of goldfish (Carassius spp.) in North America. Aquat Invasions 13(2):211–219. https://doi.org/10.3391/ai.2018.13.2.03

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195(4):231–272

    CAS  CrossRef  Google Scholar 

  • Hanfling B, Bolton P, Harley M, Carvalho GR (2005) A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshwater Biol 50(3):403–417. https://doi.org/10.1111/j.1365-2427.2004.01330.x

  • Harper AA, Watt PW, Hancock NA, Macdonald AG (1990) Temperature acclimation effects on carp nerve: a comparison of nerve conduction, membrane fluidity and lipid composition. J Exp Biol 154(1):305–320

    CrossRef  Google Scholar 

  • Haynes GD, Gongora J, Gilligan DM, Grewe P, Moran C, Nicholas FW (2012) Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and Carassius auratus in Australia: implications for invasive species management. Anim Conserv 15(1):83–94. https://doi.org/10.1111/j.1469-1795.2011.00490.x

  • Hervey GF, Hems J (1948) The goldfish. Batchworth Press, London

    Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140(24):4982–4987. https://doi.org/10.1242/dev.099085

    CAS  CrossRef  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. https://doi.org/10.1038/nbt.2501

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Inomata H, Haraguchi T, Sasai Y (2008) Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation. Cell 134(5):854–865. https://doi.org/10.1016/j.cell.2008.07.008

    CAS  CrossRef  PubMed  Google Scholar 

  • Janvier P (1996) Early vertebrates, vol QE851 J36. Oxford University Press, Oxford

    Google Scholar 

  • Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci 110(34):13904–13909. https://doi.org/10.1073/pnas.1308335110

    CrossRef  PubMed  Google Scholar 

  • Johnson GD, Patterson C (1996) Relationships of lower euteleostean fishes. In: Stiasney MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic Press, London, pp 251–332

    CrossRef  Google Scholar 

  • Kalous L, Bohlen J, Rylková K, Petrtỳl M (2012) Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyolog Explor Freshw 23(1):11

    Google Scholar 

  • Kanungo MS, Prosser CL (1959) Physiological and biochemical adaptation of goldfish to cold and warm temperatures. I. Standard and active oxygen consumptions of cold- and warm-acclimated goldfish at various temperatures. J Cell Comp Physiol 54(3):259–263. https://doi.org/10.1002/jcp.1030540308

    CAS  CrossRef  PubMed  Google Scholar 

  • Kardong KV (2012) Vertebrates: comparative anatomy, function, evolution, 6th edn. McGraw-Hill Higher Education, Boston, MA

    Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S-I, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719. https://doi.org/10.1038/nature05846

    CAS  CrossRef  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. https://doi.org/10.1002/aja.1002030302

    CAS  CrossRef  PubMed  Google Scholar 

  • Kimura Y, Satou C, Fujioka S, Shoji W, Umeda K, Ishizuka T, Yawo H, Higashijima S-I (2013) Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr Biol 23(10):843–849. https://doi.org/10.1016/j.cub.2013.03.066

    CAS  CrossRef  PubMed  Google Scholar 

  • Kobayashi H (1970) Comparative chromosome studies in the genus Carassius, especially with a finding of polyploidy in the Ginbuna (C. auratus langsdorfii). Jpn J Ichthyol 17:153–160

    Google Scholar 

  • Kobayasi H, Ochi H, Takeuchi N (1973) Chromosome studies in the genus Carassius: comparison of C. auratus grandoculis, C. auratus buergeri, and C. auratus langsdorfii. Jpn J Ichthyol 20:7–12. https://doi.org/10.11369/jji1950.20.7. [in Japanese]

    CrossRef  Google Scholar 

  • Komiyama T, Kobayashi H, Tateno Y, Inoko H, Gojobori T, Ikeo K (2009) An evolutionary origin and selection process of goldfish. Gene 430(1–2):5–11. https://doi.org/10.1016/j.gene.2008.10.019

    CAS  CrossRef  PubMed  Google Scholar 

  • Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Shin-ichiro SM, Yoshihara D (2020) The genetic basis of morphological diversity in domesticated goldfish. Curr Biol 30:1–15. https://doi.org/10.1016/j.cub.2020.04.034

    CAS  CrossRef  Google Scholar 

  • Kuratani S (2004) Evolutionary morphology (動物進化形態学), 1st edn. University of Tokyo Press, Tokyo. [in Japanese]

    Google Scholar 

  • Kyle AL, Peter RE (1982) Effects of forebrain lesions on spawning behaviour in the male goldfish. Physiol Behav 28(6):1103–1109. https://doi.org/10.1016/0031-9384(82)90183-4

    CAS  CrossRef  PubMed  Google Scholar 

  • Levine RL, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237(4):427–444. https://doi.org/10.1002/cne.902370402

    CAS  CrossRef  PubMed  Google Scholar 

  • Li IJ, Chang CJ, Liu SC, Abe G, Ota KG (2015) Postembryonic staging of wild-type goldfish, with brief reference to skeletal systems. Dev Dyn. https://doi.org/10.1002/dvdy.24340

  • Li IJ, Lee SH, Abe G, Ota KG (2019) Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn 248(4):251–283. https://doi.org/10.1002/dvdy.15

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, Kabce G (2001) Functional anatomy of the vertebrates: an evolutionary perspective. 3rd revised ed. Brooks Cole, Pacific Grove

    Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin C-W, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K-P, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger J-P, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O’Neill B, O’Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819. https://doi.org/10.1038/nature04338

    CAS  CrossRef  PubMed  Google Scholar 

  • Lisser DFJ, Lister ZM, Pham-Ho PQH, Scott GR, Wilkie MP (2017) Relationship between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high environmental ammonia. Am J Physiol Regul Integr Comp Physiol 312(1):R114–R124. https://doi.org/10.1152/ajpregu.00208.2016

    CrossRef  PubMed  Google Scholar 

  • Liu S (2010) Distant hybridization leads to different ploidy fishes. Sci China Life Sci 53(4):416–425. https://doi.org/10.1007/s11427-010-0057-9

    CrossRef  PubMed  Google Scholar 

  • Liu SJ, Luo J, Chai J, Ren L, Zhou Y, Huang F, Liu XC, Chen YB, Zhang C, Tao M, Lu B, Zhou W, Lin GL, Mai C, Yuan S, Wang J, Li T, Qin QB, Feng H, Luo KK, Xiao J, Zhong H, Zhao RR, Duan W, Song ZY, Wang YQ, Wang J, Zhong L, Wang L, Ding ZL, Du ZL, Lu XM, Gao Y, Murphy RW, Liu Y, Meyer A, Zhang YP (2016) Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish x common carp cross. Proc Natl Acad Sci U S A 113(5):1327–1332. https://doi.org/10.1073/pnas.1512955113

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Luiten PGM (1981) Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.). Brain Res 220(1):51–65. https://doi.org/10.1016/0006-8993(81)90210-9

  • Luiten PGM, van der Pers JNC (1977) The connections of the trigeminal and facial motor nuclei in the brain of the carp (cyprinus carpio L.) as revealed by anterograde and retrograde transport of horseradish peroxidase. J Comp Neurol 174(4):575–590. https://doi.org/10.1002/cne.901740403

  • Luo J, Stadler PF, He S, Meyer A (2007) PCR survey of hox genes in the goldfish Carassius auratus auratus. J Exp Zool B Mol Dev Evol 308B(3):250–258. https://doi.org/10.1002/jez.b.21144

  • Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 280(1):R100–R107. https://doi.org/10.1152/ajpregu.2001.280.1.R100

    CAS  CrossRef  PubMed  Google Scholar 

  • Makino S (1939) The chromosomes of the carp, Cyprinus carpio, including those of some related species of Cyprinidae for comparison. Cytologia 9(4):430–440. https://doi.org/10.1508/cytologia.9.430

  • Martyniuk CJ, Crawford AB, Hogan NS, Trudeau VL (2005) GABAergic modulation of the expression of genes involved in GABA synaptic transmission and stress in the hypothalamus and telencephalon of the female goldfish (Carassius auratus). J Neuroendocrinol 17(5):269–275. https://doi.org/10.1111/j.1365-2826.2005.01311.x

  • Masai H, Takatsuji K, Sato Y (1982) Morphological variability of the brains under domestication from the crucian carp to the goldfish. J Zool Syst Evol Res 20(2):112–118. https://doi.org/10.1111/j.1439-0469.1983.tb00256.x

    CrossRef  Google Scholar 

  • Matsui Y (1934) Genetical studies on gold-fish of Japan. Imper Fish Inst XXX(1):1–96

    Google Scholar 

  • Matsui Y (1935) Kagaku to shumikara mita Kingyo no kenkyuu (科学と趣味から見た金魚の研究). Seizando-Shoten Publishing Co, Ltd, Tokyo, vol 90(12). https://ci.nii.ac.jp/ncid/BA79565196 [in Japanese]

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res Rev 6(3):247–297

    CrossRef  Google Scholar 

  • Miyasaka N, Morimoto K, Tsubokawa T, Higashijima S-I, Okamoto H, Yoshihara Y (2009) From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci 29(15):4756–4767. https://doi.org/10.1523/JNEUROSCI.0118-09.2009

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mizuno T, Yamaha E, Yamazaki F (1997) Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus. Dev Genes Evol 206(6):389–396. https://doi.org/10.1007/s004270050068

  • Morgan DL, Beatty SJ (2007) Feral goldfish (Carassius auratus) in western Australia: a case study from the Vasse River. J R Soc Western Australia 90(3):151–156

    Google Scholar 

  • Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4(3):189–202. https://doi.org/10.1016/S0960-9822(00)00048-8

    CAS  CrossRef  PubMed  Google Scholar 

  • Murakami M, Matsuba C, Fujitani H (2001) The maternal origins of the triploid ginbuna (Carassius auratus langsdorfi): phylogenetic relationships within the C. auratus taxa by partial mitochondrial D-loop sequencing. Genes Genet Syst 76(1):25–32. https://doi.org/10.1266/ggs.76.25

  • Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development (Cambridge, England) 135(1):159–169. https://doi.org/10.1242/dev.009050

    CAS  CrossRef  Google Scholar 

  • Negishi K, Kato S, Teranishi T, Laufer M (1978) An electrophysiological study on the cholinergic system in the carp retina. Brain Res 148(1):85–93. https://doi.org/10.1016/0006-8993(78)90379-7

    CAS  CrossRef  PubMed  Google Scholar 

  • Nelson JS, Grande TC, Wilson MV (2016) Fishes of the World. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Garland Publishing, New York

    Google Scholar 

  • Northcutt RG (2008) Forebrain evolution in bony fishes. Brain Res Bull 75(2–4):191–205. https://doi.org/10.1016/j.brainresbull.2007.10.058

    CrossRef  PubMed  Google Scholar 

  • Ojima Y (1983) Fish cytogenetics (魚類細胞遺伝学). Suikoushya, Tokyo

    Google Scholar 

  • Ojima Y, Takai A (1979) Further cytogenetical studies on the origin of the gold-fish. Proc Jpn Acad Ser B 55(7):346–350. https://doi.org/10.2183/pjab.55.346

    CrossRef  Google Scholar 

  • Ojima Y, Ueda T, Narikawa T (1979) A cytogenetic assessment on the origin of the gold-fish. Proc Jpn Acad Ser B 55(2):58–63. https://doi.org/10.2183/pjab.55.58

    CrossRef  Google Scholar 

  • Okamoto H, Agetsuma M, Aizawa H (2012) Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 72(3):386–394. https://doi.org/10.1002/dneu.20913

    CrossRef  PubMed  Google Scholar 

  • Okuyama Y, Tanabe AS, Kato M (2012) Entangling ancient allotetraploidization in Asian mitella: an integrated approach for multilocus combinations. Mol Biol Evol 29(1):429–439. https://doi.org/10.1093/molbev/msr236

    CAS  CrossRef  PubMed  Google Scholar 

  • Ota KG, Abe G (2016) Goldfish morphology as a model for evolutionary developmental biology. Wiley Interdiscip Rev Dev Biol 5(3):272–295. https://doi.org/10.1002/wdev.224

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Otani S, Maegawa S, Inoue K, Arai K, Yamaha E (2002) The germ cell lineage identified by vas-mRNA during the embryogenesis in goldfish. Zool Sci 19(5):519–526. https://doi.org/10.2108/zsj.19.519

    CrossRef  Google Scholar 

  • Parichy DM (2015) The natural history of model organisms: advancing biology through a deeper understanding of zebrafish ecology and evolution. Elife e05635:4. https://doi.org/10.7554/eLife.05635

  • Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE (2009) Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn 238(12):2975–3015. https://doi.org/10.1002/dvdy.22113

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pastor AM, Calvo PM, de la Cruz RR, Baker R, Straka H (2019) Discharge properties of morphologically identified vestibular neurons recorded during horizontal eye movements in the goldfish. J Neurophysiol 121(5):1865–1878. https://doi.org/10.1152/jn.00772.2018

    CAS  CrossRef  PubMed  Google Scholar 

  • Podlesnykh AV, Apalikova OV, Brykov VA (2012) Phylogenetic relationships of silver crucian carp in Carassius auratus complex based on mtDNA analysis. Russ J Genet 48(12):1207–1217. https://doi.org/10.1134/S1022795412120113

  • Podlesnykh AV, Brykov VA, Skurikhina LA (2015) Polyphyletic origin of ornamental goldfish. Food Nutr Sci 6(11):9. https://doi.org/10.4236/fns.2015.611104

    CAS  CrossRef  Google Scholar 

  • Portugues R, Severi KE, Wyart C, Ahrens MB (2013) Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr Opin Neurobiol 23(1):119–126. https://doi.org/10.1016/j.conb.2012.11.001

    CAS  CrossRef  PubMed  Google Scholar 

  • Powers EB (1918) The goldfish (Carassius carassius) as a test animal in the study of toxicity. Auspices of the Graduate School by The University of Illinois

    Google Scholar 

  • Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. J Morphol 198(2):131–147. https://doi.org/10.1002/jmor.1051980202

  • Qin Q, Wang Y, Wang J, Dai J, Xiao J, Hu F, Luo K, Tao M, Zhang C, Liu Y (2014) The autotetraploid fish derived from hybridization of Carassius auratus red var.(female) × Megalobrama amblycephala (male). Biol Reprod 91(4):93–91

    Google Scholar 

  • Rahmat S, Gilland E (2019) Hindbrain neurovascular anatomy of adult goldfish (Carassius auratus). J Anat 235(4):783–793. https://doi.org/10.1111/joa.13026

    CrossRef  PubMed  Google Scholar 

  • Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtỳl M (2013) Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380:13–20

    CrossRef  Google Scholar 

  • Saitoh K, Miya M, Inoue JG, Ishiguro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol 56(4):464–472. https://doi.org/10.1007/s00239-002-2417-y

    CAS  CrossRef  PubMed  Google Scholar 

  • Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63(6):826–841. https://doi.org/10.1007/s00239-005-0293-y

    CAS  CrossRef  PubMed  Google Scholar 

  • Schmidt JT, Cicerone CM, Easter SS (1978) Expansion of the half retinal projection to the tectum in goldfish: an electrophysiological and anatomical study. J Comp Neurol 177(2):257–277

    CrossRef  Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJC, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343. https://doi.org/10.1038/nature19840

  • Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H, Campbell M, Tan H, Huff CD, Hu H, Vickrey AI (2013) Genomic diversity and evolution of the head crest in the rock pigeon. Science 339(6123):1063–1067

    CAS  CrossRef  Google Scholar 

  • Sivasubbu S, Balciunas D, Davidson AE, Ma P, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123(7):513–529. https://doi.org/10.1016/j.mod.2006.06.002

    CAS  CrossRef  PubMed  Google Scholar 

  • Smartt J (2001) Goldfish varieties and genetics: a handbook for breeders. Blackwell Science, Oxford

    CrossRef  Google Scholar 

  • Somamoto T, Yoshiura Y, Nakanishi T, Ototake M (2005) Molecular cloning and characterization of two types of CD8α from ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 29(8):693–702

    Google Scholar 

  • Somamoto T, Okamoto N, Nakanishi T, Ototake M, Nakao M (2009) In vitro generation of viral-antigen dependent cytotoxic T-cells from ginbuna crucian carp, Carassius auratus langsdorfii. Virology 389(1–2):26–33

    Google Scholar 

  • Somamoto T, Kondo M, Nakanishi T, Nakao M (2014) Helper function of CD4+ lymphocytes in antiviral immunity in ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 44(1):111–115

    Google Scholar 

  • Stringham SA, Mulroy EE, Xing J, Record D, Guernsey MW, Aldenhoven JT, Osborne EJ, Shapiro MD (2012) Divergence, convergence, and the ancestry of feral populations in the domestic rock pigeon. Curr Biol 22(4):302–308

    CAS  CrossRef  Google Scholar 

  • Sun Y, Yin Y, Zhang J, Yu H, Wang X (2007) Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No. 1 exposure. Environ Toxicol 22(3):256–263. https://doi.org/10.1002/tox.20262

  • Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi K, Miya M, Nishida M (2010) Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol Biol 10:7. https://doi.org/10.1186/1471-2148-10-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Takeda A, Shuto M, Funakoshi K (2018) Chondroitin sulfate expression in perineuronal nets after goldfish spinal cord lesion. Front Cell Neurosci 12:63

    CrossRef  Google Scholar 

  • Tanaka M, Yamaha E, Arai K (2004) Survival capacity of haploid-diploid goldfish chimeras. J Exp Zool Part A Comp Exp Biol 301(6):491–501. https://doi.org/10.1002/jez.a.48

    CrossRef  Google Scholar 

  • Tomizawa T, Kijima T, Futami K, Takahashi K, Okamoto N (2015) Mitochonroria DNA oyobi kaku DNA no kaisekiniyoru Uonuma Tetsugyo no kigen (ミトコンドリアDNA および核DNA の解析による魚取沼テツギョの起源). Ichiolog Res 62(1):51–57. https://doi.org/10.11369/jji.62.51

    CrossRef  Google Scholar 

  • Torres B, Pastor AM, Cabrera B, Salas C, Delgado-García JM (1992) Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase. J Comp Neurol 324(3):449–461. https://doi.org/10.1002/cne.903240311

  • Tsai H-Y, Chang M, Liu S-C, Abe G, Ota KG (2013) Embryonic development of goldfish (Carassius auratus): a model for the study of evolutionary change in developmental mechanisms by artificial selection. Dev Dyn 242(11):1262–1283. https://doi.org/10.1002/dvdy.24022

  • Tsukuda H, Bunshin L, Ken-Ichi F (1985) Pulsation rate and oxygen consumption of isolated hearts of the goldfish, Carassius auratus, acclimated to different temperatures. Comp Biochem Physiol A Physiol 82(2):281–283

    Google Scholar 

  • Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y (2013) Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity 111(5):430–436. https://doi.org/10.1038/hdy.2013.65

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vinepinsky E, Donchin O, Segev R (2017) Wireless electrophysiology of the brain of freely swimming goldfish. J Neurosci Methods 278:76–86. https://doi.org/10.1016/j.jneumeth.2017.01.001

    CrossRef  PubMed  Google Scholar 

  • Vinepinsky E, Cohen L, Perchik S, Ben-Shahar O, Donchin O, Segev R (2020) Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish. Sci Rep 10(1):14762. https://doi.org/10.1038/s41598-020-71,217-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Von Bartheld CS, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238(3):475–487

    Google Scholar 

  • Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles JC, Mosher DS, Spady TC, Elkahloun A, Geffen E, Pilot M, Jedrzejewski W, Greco C, Randi E, Bannasch D, Wilton A, Shearman J, Musiani M, Cargill M, Jones PG, Qian Z, Huang W, Ding Z-L, Zhang Y-P, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464(7290):898–902. https://doi.org/10.1038/nature08837

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang S-H, Huang P-P, Li X-Y, Wang C-Y, Zhang W-H, Wang J-J (2009) Embryonic and developmental toxicity of the ionic liquid 1-methyl-3-octylimidazolium bromide on goldfish. Environ Toxicol 25(3):243–250. https://doi.org/10.1002/tox.20496

    CAS  CrossRef  Google Scholar 

  • Warner JL, Gomelsky B, Delomas TA, Kramer AG, Novelo ND (2018) Reproductive ability of second generation ornamental (koi) carp (Cyprinus carpio L.) × goldfish (Carassius auratus L.) hybrids and characteristics of their offspring. Aquacult Res 49(6):2317–2321. https://doi.org/10.1111/are.13694

  • Wayne RK, Ostrander EA (2007) Lessons learned from the dog genome. Trends Genet 23(11):557–567. https://doi.org/10.1016/j.tig.2007.08.013

    CAS  CrossRef  PubMed  Google Scholar 

  • Weyl OLF, Ellender BR, Wassermann RJ, Truter M, Dalu T, Zengeya TA, Smit NJ (2020) Alien freshwater fauna in South Africa. In: van Wilgen BW, Measey J, Richardson DM, Wilson JR, Zengeya TA (eds) Biological invasions in South Africa. Springer International Publishing, Cham, pp 153–183. https://doi.org/10.1007/978-3-030-32,394-3_6

    CrossRef  Google Scholar 

  • Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13(12):2700–2707. https://doi.org/10.1101/gr.1725103

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wittbrodt J, Shima A, Schartl M (2002) Medaka—a model organism from the far East. Nat Rev Genet 3(1):53–64. https://doi.org/10.1038/nrg704

    CAS  CrossRef  PubMed  Google Scholar 

  • Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G, Zhang Y, Huo L, Zhao Z, Cao D, Lu C, Li C, Zhou Y, Liu Z, Fan Z, Shan G, Li X, Wu S, Song L, Hou G, Jiang Y, Jeney Z, Yu D, Wang L, Shao C, Song L, Sun J, Ji P, Wang J, Li Q, Xu L, Sun F, Feng J, Wang C, Wang S, Wang B, Li Y, Zhu Y, Xue W, Zhao L, Wang J, Gu Y, Lv W, Wu K, Xiao J, Wu J, Zhang Z, Yu J, Sun X (2014) Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet 46(11):1212–1219. https://doi.org/10.1038/ng.3098

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamaha E, Yamazaki F (1993) Electrically fused-egg induction and its development in the goldfish, Carassius auratus. Int J Dev Biol 37(2):291–298

    Google Scholar 

  • Yamaha E, Mizuno T, Hasebe Y, Takeda H, Yamazaki F (1998) Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev Growth Differ 40(3):267–275. https://doi.org/10.1046/j.1440-169X.1998.t01-1-00002.x

  • Yamaha E, Mizuno T, Matsushita K, Hasebe Y (1999) Developmental staging in goldfish during the pre-gastrula stage. Nippon Suisan Gakkaishi 65(4):709–717. https://doi.org/10.2331/suisan.65.709

    CrossRef  Google Scholar 

  • Yamaha E, Kazama-Wakabayashi M, Otani S, Fujimoto T, Arai K (2001) Germ-line chimera by lower-part blastoderm transplantation between diploid goldfish and triploid crucian carp. Genetica 111(1–3):227–236. https://doi.org/10.1023/A:1013780423986

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamaha E, Murakami M, Hada K, Otani S, Fujimoto T, Tanaka M, Sakao S, Kimura S, Sato S, Arai K (2003) Recovery of fertility in male hybrids of a cross between goldfish and common carp by transplantation of PGC (primordial germ cell)-containing graft. Genetica 119(2):121–131. https://doi.org/10.1023/A:1026061828744

    CAS  CrossRef  PubMed  Google Scholar 

  • Zottoli SJ, Van Horne C (1983) Posterior lateral line afferent and efferent pathways within the central nervous system of the goldfish with special reference to the Mauthner cell. J Comp Neurol 219(1):100–111. https://doi.org/10.1002/cne.902190110

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 "The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ota, K.G. (2021). Goldfish as an Experimental Model. In: Goldfish Development and Evolution. Springer, Singapore. https://doi.org/10.1007/978-981-16-0850-6_2

Download citation