Skip to main content

Performance Evaluation of Solar PV Using Multiple Level Voltage Gain Boost Converter with C-L-C Cell

  • Conference paper
  • First Online:
Book cover Innovations in Electrical and Electronic Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 756))

Abstract

The paper presents the performance analysis of a Solar Photovoltaic (SPV) system with a multiple gain boost converter. Mathematical model of a single diode-based SPV is developed and simulated. The corresponding plots of PV and IV characteristics for various temperatures and irradiation are given. The current work also presents the results of MATLAB simulation studies of a SPV system connected to an advanced multiple gain boost converter with Capacitor-Inductor-Capacitance (C-L-C) topology. Generation of different levels of high voltage is possible to meet the requirement of any given application, as this converter is modular in nature. The paper also discusses the performance analysis and comparative study of the SPV system connected to a two-level C-L-C, three-level C-L-C and conventional converters. The simulation results show that the C-L-C converter for SPV is efficient with high gain compared to the conventional DC-DC converter. The peak overshoot in the output voltage of a C-L-C converter is substantially lesser than the conventional converter and decreases with increase in the levels. It is also seen that the output voltage gain is 3 and 4 for a two- and three-level C-L-C converter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA Homepage, https://www.iea.org/reports/global-energy-review-2020/renewables. Last accessed 20 Nov 2020

  2. A. Mahesh, K.S. Sandhu, Hybrid wind/photovoltaic energy system developments: Critical review and findings.Renew. Sustain. Energy Rev. 52, 1135–1147 (2015)

    Google Scholar 

  3. B.K. Dey, I. Khan, N. Mandal, A. Bhattacharjee, Mathematical modelling and characteristic analysis of Solar PV Cell, in 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1–5 (2016)

    Google Scholar 

  4. H. Patel, M. Gupta, A.K. Bohre, Mathematical modeling and performance analysis of MPPT based solar PV system, in 2016 International Conference on Electrical Power and Energy Systems (ICEPES), pp. 157–162 (2016)

    Google Scholar 

  5. M. Malinowski, J.I. Leon, H. Abu-Rub, Solar photovoltaic and thermal energy systems: current technology and future trends. Proc. IEEE 105(11), 2132–2146 (2017)

    Article  Google Scholar 

  6. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017)

    Article  Google Scholar 

  7. A.N.A. Ali, M.H. Saied, M.Z. Mostafa, T.M. Abdel-Moneim, A survey of maximum PPT techniques of PV systems, in 2012 IEEE Energytech, pp. 1–17 (2012)

    Google Scholar 

  8. M. Jazayeri, S. Uysal, K. Jazayeri, Evaluation of maximum power point tracking techniques in PV systems using MATLAB/Simulink, in 2014 Sixth Annual IEEE Green Technologies Conference, pp. 54–60 (2014)

    Google Scholar 

  9. Y. Mahmoud, Toward a long-term evaluation of MPPT techniques in PV systems, in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1106–1113 (2017)

    Google Scholar 

  10. AET Homepage, https://www.alternative-energy-tutorials.com/solar-power/pv-panel.html. Last accessed 20 Nov 2020

  11. S.N. Singh, Selection of non-isolated DC-DC converters for solar photovoltaic system. Renew. Sustain. Energy Rev. 76, 1230–1247 (2017)

    Article  Google Scholar 

  12. N.J. Philips, G.E. Francois, Necessary and sufficient conditions for the stability of buck-type switched-mode power supplies. IEEE Trans. Ind. Electron. Control. Instrum. 3, 229–234 (1981)

    Article  Google Scholar 

  13. S. Xu, F. Sun, M. Yang, C. Han, W. Sun, S. Lu, A wide output range voltage-mode buck converter with fast voltage–tracking speed for RF power amplifiers. Microelectron. J. 46(1), 111–120 (2015)

    Article  Google Scholar 

  14. R.N. Shaw, P. Walde, A. Ghosh, Effects of solar irradiance on load sharing of integrated photovoltaic system with IEEE standard bus network. Int. J. Eng. Adv. Technol. 9(1) (2019)

    Google Scholar 

  15. S. Krithiga, N.A. Gounden, Investigations of an improved PV system topology using multilevel boost converter and line commutated inverter with solutions to grid issues. Simul. Model. Pract. Theory 42, 147–159 (2014)

    Article  Google Scholar 

  16. R.N. Shaw, P. Walde, A. Ghosh, A new model to enhance the power and performances of 4x4 PV arrays with puzzle shade dispersion. Int. J. Innov. Technol. Explor. Eng. 8(12) (2019)

    Google Scholar 

  17. J.W. Yang, H.L. Do, Analysis and design of a high-efficiency zero-voltage-switching step-up DC–DC converter. Sadhana 38(4), 653–665 (2013)

    Article  Google Scholar 

  18. R.N. Shaw, P. Walde, A. Ghosh, IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion, in 2020 IEEE 9th Power India International Conference (PIICON) held at Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, India on Feb 28–March 1, 2020

    Google Scholar 

  19. C.M. Krishna, Computationally efficient models for simulation of non-ideal DC–DC converters operating in continuous and discontinuous conduction modes. Sadhana 40(7), 2045–2072 (2015)

    Article  MathSciNet  Google Scholar 

  20. T. Kok Soon, S. Mekhilef, A. Safari, Simple and low cost incremental conductance maximum power point tracking using buck-boost converter. J. Renew. Sustain. Energy 5(2), 023106 (2013)

    Google Scholar 

  21. A. Kavitha, G. Uma, M.B. Reesha, Analysis of fast-scale instability in a power factor correction Cuk converter. IET Power Electron. 5(8), 1333–1340 (2012)

    Article  Google Scholar 

  22. E. Selwan, G. Park, Z. Gajic, Optimal control of the Cuk converter used in solar cells via a jump parameter technique. IET Control Theory Appl. 9(6), 893–899 (2014)

    Article  Google Scholar 

  23. M. Mahdavi, H. Farzanehfard, Bridgeless SEPIC PFC rectifier with reduced components and conduction losses. IEEE Trans. Industr. Electron. 58(9), 4153–4160 (2010)

    Article  Google Scholar 

  24. H.L. Do, Soft-switching SEPIC converter with ripple-free input current. IEEE Trans. Power Electron. 27(6), 2879–2887 (2011)

    Article  Google Scholar 

  25. S. Narula, B. Singh, G. Bhuvaneswari, Power factor corrected welding power supply using modified zeta converter. IEEE J. Emerg. Selected Topics Power Electron. 4(2), 617–625 (2015)

    Article  Google Scholar 

  26. T.F. Wu, S.A. Liang, Y.M. Chen, Design optimization for asymmetrical ZVS-PWM zeta converter. IEEE Trans. Aerosp. Electron. Syst. 39(2), 521–532 (2003)

    Article  Google Scholar 

  27. A. Chini, F. Soci, Boost-converter-based solar harvester for low power applications. Electron. Lett. 46(4), 296–298 (2010)

    Article  Google Scholar 

  28. N.R. Sulake, A.K. Devarasetty Venkata, S.B. Choppavarapu, FPGA implementation of a three-level boost converter-fed seven-level dc-link cascade H-bridge inverter for photovoltaic applications. Electronics 7(11), 282 (2018)

    Article  Google Scholar 

  29. S.N. Rao, D.V. Ashok Kumar, C.S. Babu,Implementation of multilevel boost DC-link cascade based reversing voltage inverter for low THD operation. J. Electr. Eng. Technol. 13(4), 1528–1538 (2018)

    Google Scholar 

  30. Y. Li, S. Sathiakumar, J.L. Soon, Multiple lift DC–DC boost converter using CLC cell. Aust. J. Electr. Electron. Eng. 16(1), 46–55 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Kiran Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiran Kumar, B.M., Indira, M.S., Nagaraja Rao, S. (2021). Performance Evaluation of Solar PV Using Multiple Level Voltage Gain Boost Converter with C-L-C Cell. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 756. Springer, Singapore. https://doi.org/10.1007/978-981-16-0749-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0749-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0748-6

  • Online ISBN: 978-981-16-0749-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics