Skip to main content

Growth Physiology and Kinetics

  • Chapter
  • First Online:
Fundamentals of Bacterial Physiology and Metabolism

Abstract

Growth is an indispensable phenomenon in living organisms that results in a rise in the population number or cell size. Generally, a bacterial culture shows four growth phases: the lag, exponential, stationary and death phases. The cells in the lag phase do not divide but are metabolically active. This is followed by exponential or logarithmic phase where the cells divide exponentially and attain their maximum specific growth rate (\({\mu }_{\mathrm{max}}\)). As the nutrients deplete, the growth ceases and the cells enter into a stationary phase followed by death phase, where the population number declines logarithmically. In the presence of different sugars, microorganisms show diauxic growth behavior, where the lesser complex carbon sources are preferentially utilized. Various environmental factors that affect growth and methods used for the enumeration and quantification of the microbial population are discussed. Monod kinetics and other mathematical models used to study the growth behavior in batch, fed-batch and CSTR operations are explained. Further, designing the optimal feeding strategies to achieve high cell density for wild-type and recombinant cultures in a fermenter to improve volumetric productivity is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, F. (2007). Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Bioscience, Biotechnology, and Biochemistry, 71(10), 2347–2357.

    Article  CAS  Google Scholar 

  • Adrio, J. L., & Demain, A. L. (2010). Recombinant organisms for production of industrial products. Bioengineered Bugs, 1(2), 116–131.

    Article  Google Scholar 

  • Allocati, N., Masulli, M., Di Ilio, C., & De Laurenzi, V. (2015). Die for the community: An overview of programmed cell death in bacteria. Cell Death and Disease, 6(1), e1609.

    Article  CAS  Google Scholar 

  • Angert, E. R. (2005). Alternatives to binary fission in bacteria. Nature Reviews Microbiology, 3(3), 214.

    Article  CAS  Google Scholar 

  • Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Comprehensive Reviews in Food Science and Food Safety, 3(1), 1–20.

    Article  CAS  Google Scholar 

  • Behera, S., Ghanty, S., Ahmad, F., Santra, S., & Banerjee, S. (2012). UV-visible spectrophotometric method development and validation of assay of paracetamol tablet formulation. Journal Analysis Bioanalytical Techniques, 3(6), 151–157.

    Google Scholar 

  • Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., et al. (2006). The genome of the square archaeon Haloquadratum walsbyi: Life at the limits of water activity. BMC Genomics, 7(1), 169.

    Article  Google Scholar 

  • Borisov, V. B., & Verkhovsky, M. I. (2015). Oxygen as Acceptor. EcoSal Plus, 6(2).

    Google Scholar 

  • Boutte, C. C., & Crosson, S. (2013). Bacterial lifestyle shapes stringent response activation. Trends in Microbiology, 21(4), 174–180.

    Article  CAS  Google Scholar 

  • Cadena-Herrera, D., Esparza-De Lara, J. E., Ramírez-Ibañez, N. D., López-Morales, C. A., Pérez, N. O., Flores-Ortiz, L. F., & Medina-Rivero, E. (2015). Validation of three viable-cell counting methods: Manual, semi-automated, and automated. Biotechnology Reports, 7, 9–16.

    Article  Google Scholar 

  • Chou, C. P. (2007). Engineering cell physiology to enhance recombinant protein production in E. coli. Applied Microbiology and Biotechnology, 76(3), 521–532.

    Article  CAS  Google Scholar 

  • Costa, A. R., Rodrigues, M. E., Henriques, M., Oliveira, R., & Azeredo, J. (2014). Feed optimization in fed-batch culture. In Animal cell biotechnology (pp. 105–116). Humana Press.

    Google Scholar 

  • DasSarma, S., & DasSarma, P. (2015). Halophiles and their enzymes: Negativity put to good use. Current Opinion in Microbiology, 25, 120–126.

    Article  CAS  Google Scholar 

  • Doern, G. V. (2000). Detection of selected fastsidious bacteria. Clinical Infectious Diseases, 30(1), 166–173.

    Article  CAS  Google Scholar 

  • Frostegård, Å., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22(1–2), 59–65.

    Article  Google Scholar 

  • Fütterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., et al. (2004). Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proceedings of the National Academy of Sciences, 101(24), 9091–9096.

    Article  Google Scholar 

  • Griffiths, A. J., Gelbart, W. M., Miller, J. H., & Lewontin, R. C. (1999). Regulation of the lactose system. In Modern genetic analysis. WH Freeman.

    Google Scholar 

  • Hagen, S. J. (2010). Exponential growth of bacteria: Constant multiplication through division. American Journal of Physics, 78(12), 1290–1296.

    Article  Google Scholar 

  • Hedblom, G., Reiland, H., Sylte, M. J., Johnson, T. J., & Baumler, D. J. (2018). Segmented filamentous bacteria—metabolism meets immunity. Frontiers in Microbiology, 9, 1991.

    Article  Google Scholar 

  • Hoffmann, F., & Rinas, U. (2004). Stress induced by recombinant protein production in Escherichia coli. In Physiological stress responses in bioprocesses (pp. 73–92). Springer.

    Google Scholar 

  • Ishino, S., & Ishino, Y. (2014). DNA polymerases as useful reagents for biotechnology—The history of developmental research in the field. Frontiers in Microbiology, 5, 465.

    Article  Google Scholar 

  • Jebbar, M., Franzetti, B., Girard, E., & Oger, P. (2015). Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles, 19(4), 721–740.

    Article  CAS  Google Scholar 

  • Kahlert, M., & McKie, B. G. (2014). Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters. Environmental Science: Processes and Impacts, 16(11), 2627–2634.

    CAS  Google Scholar 

  • Kengen, S. W. (2017). Pyrococcus furiosus, 30 years on. Microbial Biotechnology, 10(6), 1441–1444.

    Article  Google Scholar 

  • Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. Journal of Biological Chemistry, 274(23), 16040–16046.

    Article  CAS  Google Scholar 

  • Martens, R. (1995). Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biology and Fertility of Soils, 19(2–3), 87–99.

    Article  CAS  Google Scholar 

  • Morozkina, E. V., Slutskaia, E. S., Fedorova, T. V., Tugaĭ, T. I., Golubeva, L. I., & Koroleva, O. V. (2010). Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). Prikladnaia Biokhimiia I Mikrobiologiia, 46(1), 5–20.

    CAS  PubMed  Google Scholar 

  • Pilizota, T., & Shaevitz, J. W. (2013). Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli. Biophysical Journal, 104(12), 2733–2742.

    Article  CAS  Google Scholar 

  • Preiss, L., Hicks, D. B., Suzuki, S., Meier, T., & Krulwich, T. A. (2015). Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Frontiers in Bioengineering and Biotechnology, 3, 75.

    Article  Google Scholar 

  • Riesenberg, D., & Guthke, R. (1999). High-cell-density cultivation of microorganisms. Applied Microbiology and Biotechnology, 51(4), 422–430.

    Article  CAS  Google Scholar 

  • Roberts, M. F. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1(1), 5.

    Article  Google Scholar 

  • Sanders, E. R. (2012). Aseptic laboratory techniques: Plating methods. JoVE (Journal of Visualized Experiments), 63, e3064.

    Google Scholar 

  • Siliakus, M. F., van der Oost, J., & Kengen, S. W. (2017). Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles, 21(4), 651–670.

    Article  CAS  Google Scholar 

  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2017). Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech, 7(1), 15.

    Article  Google Scholar 

  • Sleator, R. D., Gahan, C. G., & Hill, C. (2003). A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Applied and Environment Microbiology, 69(1), 1–9.

    Article  CAS  Google Scholar 

  • Strober, W. (1997). Monitoring cell growth. Current Protocols in Immunology, 21(1), A–3A.

    Google Scholar 

  • Sutton, S. (2010). The most probable number method and its uses in enumeration, qualification, and validation. Journal of Validation Technology, 16(3), 35–38.

    Google Scholar 

  • Waterbury, J. B., & Stanier, R. Y. (1978). Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiological Reviews, 42(1), 2.

    Article  CAS  Google Scholar 

  • Wlaschin, K. F., & Hu, W. S. (2006). Fedbatch culture and dynamic nutrient feeding. In Cell culture engineering (pp. 43–74). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khasa, Y.P., Mohanty, S. (2021). Growth Physiology and Kinetics. In: Fundamentals of Bacterial Physiology and Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-16-0723-3_5

Download citation

Publish with us

Policies and ethics