Skip to main content

Demonstration of a 4 × 3 × 10 Gbps WI-WDM Transmission Over MDM Link Using Ring-Core FMF

  • Conference paper
  • First Online:
Advances in Intelligent Computing and Communication

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 202))

Abstract

Few-mode fiber (FMF)-based spatial division multiplexing (SDM) and mode division multiplexing (MDM) are the most encouraging method for considerable growth of the spectral efficiency of current optical communication links. FMFs are the unique sort of fiber where every individual guiding mode is treated as a different information channel. This work presents the transmission of wavelength-interleaved (WI) wavelength division multiplexed (WDM) data channels over the MDM link. This wavelength-interleaved WDM-MDM transmission link is established to multiplex the three wavelength-interleaved WDM channels over four linearly polarized (LP) modes of a ring-core FMF over different link length to compare the link performance. A 4 × 3 × 10 Gbps wavelength-interleaved WDM-MDM link is established and verified through simulation over 100 km using intensity modulation and direct detection (IM-DD) with acceptable bit error rate (BER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desurvire, E.B.: Capacity demand and technology challenges for lightwave systems in the next two decades. J. Lightwave Technol. 24, 4697–4710 (2006)

    Article  Google Scholar 

  2. Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010)

    Article  Google Scholar 

  3. Index, C.V.N.: Forecast and methodology, 2015–2020. White paper 1–41 (2016)

    Google Scholar 

  4. Berdagué, S., Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21, 1950–1955 (1982)

    Article  Google Scholar 

  5. Bigot-Astruc, M., Trinel, J.B., Maerten, H., Stralen, M.V., Milicevic, I., Bigot, L., Plus, S., Masselot, A., Habert, R., Simonneau, C., Benyahya, K., Labroille, G., Sillard, P.: Weakly-coupled 6-LP-mode fiber with low differential mode attenuation. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2019)

    Google Scholar 

  6. Ge, D., Li, J., Zhu, J., Shen, L., Gao, Y., Yu, J., Wu, Z., Li, Z., Chen, Z., He, Y.: Design of a weakly-coupled ring-core FMF and demonstration of 6-mode 10-km IM/DD transmission. In: 2018 Optical Fiber Communications Conference and Exposition (OFC), pp. 1–3 (2018)

    Google Scholar 

  7. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Essiambre, R.-J., Winzer, P., Peckham, D.W., McCurdy, A., Lingle, R.: Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing. In: National Fiber Optic Engineers Conference, pp. PDPB10. Optical Society of America (2011)

    Google Scholar 

  8. Richardson, D., Fini, J., Nelson, L.E.: Space-division multiplexing in optical fibres. Nat. Photonics 7, 354 (2013)

    Article  Google Scholar 

  9. Sillard, P.: Few-mode fibers for space division multiplexing. In: Optical Fiber Communication Conference, pp. Th1J. 1. Optical Society of America (2016)

    Google Scholar 

  10. Sakamoto, T., Saitoh, K., Saito, S., Abe, Y., Takenaga, K., Urushibara, A., Wada, M., Matsui, T., Aikawa, K., Nakajima, K.: Spatial density and splicing characteristic optimized few-mode multi-core fiber. J. Lightwave Technol. 1–1 (2020)

    Google Scholar 

  11. Kitayama, K.-I., Diamantopoulos, N.-P.: Few-mode optical fibers: original motivation and recent progress. IEEE Commun. Mag. 55, 163–169 (2017)

    Article  Google Scholar 

  12. Sakamoto, T., Saitoh, K., Saitoh, S., Shibahara, K., Wada, M., Abe, Y., Urushibara, A., Takenaga, K., Mizuno, T., Matsui, T., Aikawa, K., Miyamoto, Y., Nakajima, K.: Six-mode seven-core fiber for repeated dense space-division multiplexing transmission. J. Lightwave Technol. 36, 1226–1232 (2018)

    Article  Google Scholar 

  13. Chang, J.H., Bae, S., Kim, H., Chung, Y.C.: Heterogeneous 12-core 4-LP-mode fiber based on trench-assisted graded-index profile. IEEE Photonics J. 9, 1–10 (2017)

    Google Scholar 

  14. Fiorani, M., Tornatore, M., Chen, J., Wosinska, L., Mukherjee, B.: Optical spatial division multiplexing for ultra-high-capacity modular data centers. In: 2016 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3. IEEE (2016)

    Google Scholar 

  15. Grieco, A., Porter, G., Fainman, Y.: Integrated space-division multiplexer for application to data center networks. IEEE J. Sel. Top. Quantum Electron. 22, 1–6 (2015)

    Article  Google Scholar 

  16. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Sierra, A., Mumtaz, S., Esmaeelpour, M., Burrows, E.C., Essiambre, R.-J., Winzer, P.J.: Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO Processing. J. Lightwave Technol. 30, 521–531 (2011)

    Article  Google Scholar 

  17. He, W., Yu, H., Sillard, P., Correa, R.A., Li, G.: Weakly-coupled few-mode fibers and their applications. In: 2017 European Conference on Optical Communication (ECOC), pp. 1–2 (2017)

    Google Scholar 

  18. Zhang, R., Tan, H., Zhang, J., Shen, L., Liu, J., Liu, Y., Zhang, L., Yu, S.: A novel ring-core fiber supporting MIMO-free 50 km Transmission Over High-Order OAM modes. In: 2019 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1–3 (2019)

    Google Scholar 

  19. Rjeb, A., Seleem, H., Fathallah, H., Machhout, M.: Design of 12 OAM-Graded index few mode fibers for next generation short haul interconnect transmission. Optical Fiber Technology 55, 102148 (2020)

    Article  Google Scholar 

  20. Li, Y., Wang, X., Zheng, H., Li, X., Bai, C., Hu, W., Liu, Y., Dong, Q.: A novel six-core few-mode fiber with low loss and low crosstalk. Optical Fiber Technol. 57, 102211 (2020)

    Article  Google Scholar 

  21. Tian, Y., Li, J., Wu, Z., Chen, Y., Zhu, P., Tang, R., Mo, Q., He, Y., Chen, Z.: Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF. Opt. Express 25, 16603–16617 (2017)

    Article  Google Scholar 

  22. Behera, B., Mohanty, M.N.: Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication. In: 2019 International Conference on Applied Machine Learning (ICAML), pp. 277–281 (2019)

    Google Scholar 

  23. Sabitu, R.I., Dong-Nhat, N., Malekmohammadi, A.: High dispersion four-mode fiber for mode-division multiplexing systems. Optik 181, 1–12 (2019)

    Article  Google Scholar 

  24. Ab-Rahman, M.S., Shaltami, F.M., Hwang, I.-S., Swedan, A.A.: Analysis of 10 Gbps SOA-based optical network unit with low seeding power that uses feedback seeding scheme. Optik 183, 602–611 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Narayan Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behera, B., Varshney, S.K., Mohanty, M.N. (2021). Demonstration of a 4 × 3 × 10 Gbps WI-WDM Transmission Over MDM Link Using Ring-Core FMF. In: Das, S., Mohanty, M.N. (eds) Advances in Intelligent Computing and Communication. Lecture Notes in Networks and Systems, vol 202. Springer, Singapore. https://doi.org/10.1007/978-981-16-0695-3_56

Download citation

Publish with us

Policies and ethics