Skip to main content

Lipidomics to Study the Role of Lipid Droplets in Host-Pathogen Interactions

  • Chapter
  • First Online:
  • 988 Accesses

Abstract

Lipid droplets (LDs) are intracellular organelles dedicated for fat storage and play critical roles in cellular homeostasis. Recently, LD biology has moved to the forefront of biomedical research due to their involvement in a variety of diseases that are affected by lipid imbalance, such as obesity, type 2 diabetes, fatty liver, cardiovascular diseases, Alzheimer’s disease, and cancer. Growing evidence suggests that majority of intracellular pathogens, be they viral, bacterial, or protozoan, rely on host LDs for completing some steps of their life cycle, thus emphasizing the importance of LDs in host-pathogen interactions. Host and pathogen lipids play vital role in the ability of the pathogen to evade host immune system. Therefore, droplet homeostasis and pathogen replication are intricately linked, the mechanisms of which are largely unknown. This chapter summarizes our current understanding of how unique aspect of LD biology is exploited by pathogens for their replication and propagation in the host. Advancement in the field of lipidomics for performing lipid-profiling of host-pathogen interactions will shed light on many novel and unanticipated findings in disease pathogenesis aimed at discovery of novel biomarkers and identification of therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olzmann JA, Carvalho P (2019) Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20:137–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Choudhary V, Schneiter R (2020) Lipid droplet biogenesis from specialized ER subdomains. Microb Cell 7:218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ben M'barek K, Ajjaji D, Chorlay A, Vanni S, Foret L, Thiam AR (2017) ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 41:591–604.e7

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary V, EL Atab O, Mizzon G, Prinz WA, Schneiter R (2020) Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. J Cell Biol 219:e201910177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, Prinz WA, Kozlov MM (2018) Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. Curr Biol 28:915–926.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santinho A, Salo VT, Chorlay A, Li S, Zhou X, Omrane M, Ikonen E, Thiam AR (2020) Membrane curvature catalyzes lipid droplet assembly. Curr Biol 30:2481–2494.e6

    Article  CAS  PubMed  Google Scholar 

  7. Chung J, Wu X, Lambert TJ, Lai ZW, Walther TC, Farese RV (2019) LDAF1 and Seipin form a lipid droplet assembly complex. Dev Cell 51:551–563.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737

    Article  CAS  PubMed  Google Scholar 

  9. Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and Monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409

    Article  CAS  PubMed  Google Scholar 

  10. Guijas C, Rodriguez JP, Rubio JM, Balboa MA, Balsinde J (2014) Phospholipase A2 regulation of lipid droplet formation. Biochim Biophys Acta 1841:1661–1671

    Article  CAS  PubMed  Google Scholar 

  11. Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    Article  CAS  PubMed  Google Scholar 

  12. Fei W, Wang H, Fu X, Bielby C, Yang H (2009) Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem J 424(1):61–67

    Article  CAS  PubMed  Google Scholar 

  13. Herker E, Ott M (2012) Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem 287:2280–2287

    Article  CAS  PubMed  Google Scholar 

  14. Ploss A, Evans MJ (2012) Hepatitis C virus host cell entry. Curr Opin Virol 2:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paul D, Madan V, Bartenschlager R (2014) Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe 16:569–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieyres G, Pietschmann T (2019) HCV pit stop at the lipid droplet: refuel lipids and put on a lipoprotein coat before exit. Cell 8

    Google Scholar 

  17. Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, Farese RV, Ott M (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16:1295–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  CAS  PubMed  Google Scholar 

  19. Kim D, Goo JI, Kim MI, Lee SJ, Choi M, Than TT, Nguyen PH, Windisch MP, Lee K, Choi Y, Lee C (2018) Suppression of hepatitis C virus genome replication and particle production by a novel Diacylglycerol Acyltransferases inhibitor. Molecules 23

    Google Scholar 

  20. Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, Mclauchlan J (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–1282

    Article  CAS  PubMed  Google Scholar 

  21. Huang H, Sun F, Owen DM, Li W, Chen Y, Gale M, Ye J (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104:5848–5853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wrensch F, Crouchet E, Ligat G, Zeisel MB, Keck ZY, Foung SKH, Schuster C, Baumert TF (2018) Hepatitis C virus (HCV)-Apolipoprotein interactions and immune evasion and their impact on HCV vaccine design. Front Immunol 9:1436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67:2773–2786

    Article  CAS  PubMed  Google Scholar 

  24. Miller JL, DE Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S (2008) The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Van Der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zybert IA, Van Der Ende-Metselaar H, Wilschut J, Smit JM (2008) Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89:3047–3051

    Article  CAS  PubMed  Google Scholar 

  28. Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G (2004) Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 78:13708–13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, DA Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Desselberger U (2014) Rotaviruses. Virus Res 190:75–96

    Article  CAS  PubMed  Google Scholar 

  31. Cheung W, Gill M, Esposito A, Kaminski CF, Courousse N, Chwetzoff S, Trugnan G, Keshavan N, Lever A, Desselberger U (2010) Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 84:6782–6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fabbretti E, Afrikanova I, Vascotto F, Burrone OR (1999) Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J Gen Virol 80(Pt 2):333–339

    Article  CAS  PubMed  Google Scholar 

  33. Parr RD, Storey SM, Mitchell DM, Mcintosh AL, Zhou M, Mir KD, Ball JM (2006) The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 80:2842–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen AW, Razani B, Schubert W, Williams TM, Wang XB, Iyengar P, Brasaemle DL, Scherer PE, Lisanti MP (2004) Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–1270

    Article  CAS  PubMed  Google Scholar 

  35. Gaunt ER, Zhang Q, Cheung W, Wakelam MJO, Lever AML, Desselberger U (2013) Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 94:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Libbing CL, Mcdevitt AR, Azcueta RP, Ahila A, Mulye M (2019) Lipid droplets: a significant but understudied contributor of host(−)bacterial interactions. Cell 8:354

    Article  CAS  Google Scholar 

  37. Belland R, Ojcius DM, Byrne GI (2004) Chlamydia. Nat Rev Microbiol 2:530–531

    Article  CAS  PubMed  Google Scholar 

  38. Kumar Y, Cocchiaro J, Valdivia RH (2006) The obligate intracellular pathogen chlamydia trachomatis targets host lipid droplets. Curr Biol 16:1646–1651

    Article  CAS  PubMed  Google Scholar 

  39. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci U S A 105:9379–9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peters J, Onguri V, Nishimoto SK, Marion TN, Byrne GI (2012) The chlamydia trachomatis CT149 protein exhibits esterase activity in vitro and catalyzes cholesteryl ester hydrolysis when expressed in HeLa cells. Microbes Infect 14:1196–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352

    Article  CAS  PubMed  Google Scholar 

  42. Sandoz KM, Valiant WG, Eriksen SG, Hruby DE, Allen RD, Rockey DD (2014) The broad-spectrum antiviral compound ST-669 restricts chlamydial inclusion development and bacterial growth and localizes to host cell lipid droplets within treated cells. Antimicrob Agents Chemother 58:3860–3866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zahrt TC (2003) Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect 5:159–167

    Article  CAS  PubMed  Google Scholar 

  44. Almeida PE, Carneiro AB, Silva AR, Bozza PT (2012) PPARgamma expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing. PPAR Res 2012:383829

    Google Scholar 

  45. Deb C, Daniel J, Sirakova TD, Abomoelak B, DUBEY VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875

    Article  CAS  PubMed  Google Scholar 

  46. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105:4376–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scollard DM, Joyce MP, Gillis TP (2006) Development of leprosy and type 1 leprosy reactions after treatment with infliximab: a report of 2 cases. Clin Infect Dis 43:e19–e22

    Article  CAS  PubMed  Google Scholar 

  49. Mattos KA, D’avila H, Rodrigues LS, Oliveira VG, Sarno EN, Atella GC, Pereira GM, Bozza PT, Pessolani MC (2010) Lipid droplet formation in leprosy: toll-like receptor-regulated organelles involved in eicosanoid formation and mycobacterium leprae pathogenesis. J Leukoc Biol 87:371–384

    Article  CAS  PubMed  Google Scholar 

  50. Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D'avila H, Melo RC, Manso PP, Sarno EN, Bozza PT, Pessolani MC (2011) Modulation of lipid droplets by mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13:259–273

    Article  CAS  PubMed  Google Scholar 

  51. Tanigawa K, Suzuki K, Nakamura K, Akama T, Kawashima A, Wu H, Hayashi M, Takahashi S, Ikuyama S, Ito T, Ishii N (2008) Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with mycobacterium leprae. FEMS Microbiol Lett 289:72–79

    Article  CAS  PubMed  Google Scholar 

  52. De Mattos KA, Sarno EN, Pessolani MC, Bozza PT (2012) Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in mycobacterium leprae pathogenesis. Mem Inst Oswaldo Cruz 107(Suppl 1):156–166

    Article  PubMed  Google Scholar 

  53. Degang Y, Akama T, Hara T, Tanigawa K, Ishido Y, Gidoh M, Makino M, Ishii N, Suzuki K (2012) Clofazimine modulates the expression of lipid metabolism proteins in mycobacterium leprae-infected macrophages. PLoS Negl Trop Dis 6:e1936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT (2018) Lipid droplet, a key player in host-parasite interactions. Front Immunol 9:1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nagajyothi F, Weiss LM, Silver DL, Desruisseaux MS, Scherer PE, Herz J, Tanowitz HB (2011) Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion. PLoS Negl Trop Dis 5:e953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, Heuser JE, Andrews NW (1992) Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71:1117–1130

    Article  CAS  PubMed  Google Scholar 

  57. Mercier C, Dubremetz JF, Rauscher B, Lecordier L, Sibley LD, Cesbron-Delauw MF (2002) Biogenesis of nanotubular network in toxoplasma parasitophorous vacuole induced by parasite proteins. Mol Biol Cell 13:2397–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nolan SJ, Romano JD, Coppens I (2017) Host lipid droplets: an important source of lipids salvaged by the intracellular parasite toxoplasma gondii. PLoS Pathog 13:e1006362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Romano JD, Coppens I (2013) Host organelle hijackers: a similar modus operandi for toxoplasma gondii and chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog Dis 69:72–86

    Article  CAS  PubMed  Google Scholar 

  60. Vielemeyer O, Mcintosh MT, Joiner KA, Coppens I (2004) Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 135:197–209

    Article  PubMed  CAS  Google Scholar 

  61. Jackson KE, Klonis N, Ferguson DJ, Adisa A, Dogovski C, Tilley L (2004) Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol Microbiol 54:109–122

    Article  CAS  PubMed  Google Scholar 

  62. Teng O, Ang CKE, Guan XL (2017) Macrophage-bacteria interactions-a lipid-centric relationship. Front Immunol 8:1836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Koberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, Gavin AC, Superti-Furga G (2015) A conserved circular network of Coregulated lipids modulates innate immune responses. Cell 162:170–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tam VC (2013) Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. Semin Immunol 25:240–248

    Article  CAS  PubMed  Google Scholar 

  65. Wenk MR (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580:5541–5551

    Article  CAS  PubMed  Google Scholar 

  66. Crick PJ, Guan XL (2016) Lipid metabolism in mycobacteria--insights using mass spectrometry-based lipidomics. Biochim Biophys Acta 1861:60–67

    Article  CAS  PubMed  Google Scholar 

  67. Barcelo-Coblijn G, Fernandez JA (2015) Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 6:3

    PubMed  PubMed Central  Google Scholar 

  68. Hulme HE, Meikle LM, Wessel H, Strittmatter N, Swales J, Thomson C, Nilsson A, Nibbs RJB, Milling S, Andren PE, Mackay CL, Dexter A, Bunch J, Goodwin RJA, Burchmore R, Wall DM (2017) Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during salmonella Typhimurium infection. Sci Rep 7:2786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Early Career Intramural Project of the All India Institute of Medical Sciences (AIIMS), New Delhi. A. Bhattacharyya is supported by Ramanujan Fellowship of Science & Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (grant: RJF/2019/000040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, A., Choudhary, V. (2021). Lipidomics to Study the Role of Lipid Droplets in Host-Pathogen Interactions. In: Hameed, S., Fatima, Z. (eds) Integrated Omics Approaches to Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-0691-5_23

Download citation

Publish with us

Policies and ethics