Skip to main content

Geno-informatics for Prediction of Virulence and Drug Resistance in Bacterial Pathogens

  • Chapter
  • First Online:
Integrated Omics Approaches to Infectious Diseases

Abstract

In recent years, there has been a rapid surge in the number of resistant strains of bacterial pathogens, mainly due to misuse of antibiotics in our day-to-day environment for treating common ailments. Hence new drug discovery is a priority. The discoveries of new antimicrobials increasingly rely on genotypic data resulting from whole genome sequencing. In recent years, there has been advancement in the whole genome sequence facilities and a number of completed genomes, but the wealth of information is not being fully utilized. Therefore, there is a need of microbial informatics algorithms to exploit this genomic data and provide an opportunity for the development of newer remedies. The combined advent of both genomics and bioinformatics can help in the identification, screening, and refinement of drug targets and predict drug resistance leading towards fast and efficient antimicrobial therapeutics. Therefore, this chapter is focused on the in silico approaches which can facilitate understanding, identifying, and controlling the virulence and bacterial antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piddock LJV (2016) Reflecting on the final report of the O’Neill review on antimicrobial resistance. Lancet Infect Dis 16(7):767–768

    Article  PubMed  Google Scholar 

  2. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis Off Publ Infect Dis Soc Am 49(11):1749–1755

    Article  CAS  Google Scholar 

  3. Kahlmeter G (2014) Defining antibiotic resistance-towards international harmonization. Ups J Med Sci 119(2):78–86

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu X, Xu B, Yang Y, Liu D, Yang M, Wang J et al (2013) A high throughput multiplex PCR assay for simultaneous detection of seven aminoglycoside-resistance genes in Enterobacteriaceae. BMC Microbiol 13:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bugarel M, Granier SA, Weill F-X, Fach P, Brisabois A (2011) A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype Typhimurium. BMC Microbiol 11:151

    Article  PubMed  PubMed Central  Google Scholar 

  6. Punina NV, Makridakis NM, Remnev MA, Topunov AF (2015) Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J et al (2014) Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 52(4):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40(4):346–358

    Article  CAS  PubMed  Google Scholar 

  9. Saeb AT, Abouelhoda M, Selvaraju M, Althawadi SI, Mutabagani M, Adil M et al (2017) The use of next-generation sequencing in the identification of a fastidious pathogen: a lesson from a clinical setup. Evol Bioinforma Online 12:1176934316686072

    Google Scholar 

  10. Wu H-J, Wang AH-J, Jennings MP (2008) Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol. 12(1):93–101

    Article  CAS  PubMed  Google Scholar 

  11. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  CAS  PubMed  Google Scholar 

  12. Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  13. Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259(5095):686–688

    Article  CAS  PubMed  Google Scholar 

  14. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269(5222):400–403

    Article  CAS  PubMed  Google Scholar 

  15. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM et al (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ et al (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409(6819):529–533

    Article  CAS  PubMed  Google Scholar 

  17. Hawkey PM (1998) The origins and molecular basis of antibiotic resistance. BMJ 317(7159):657–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2)

    Google Scholar 

  19. McMurry L, Petrucci REJ, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77(7):3974–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57(10):1471–1485

    Article  CAS  PubMed  Google Scholar 

  21. Flensburg J, Sköld O (1987) Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem 162(3):473–476

    Article  CAS  PubMed  Google Scholar 

  22. Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9(4):222–231

    Article  CAS  PubMed  Google Scholar 

  23. Zumla A, Nahid P, Cole ST (2013) Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 12(5):388–404

    Article  CAS  PubMed  Google Scholar 

  24. Müller B, Borrell S, Rose G, Gagneux S (2013) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet TIG 29(3):160–169

    Article  PubMed  CAS  Google Scholar 

  25. Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(5):2979–2981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Niemann S, Köser CU, Gagneux S, Plinke C, Homolka S, Bignell H et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4(10):e7407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Eyre DW, Babakhani F, Griffiths D, Seddon J, Del Ojo Elias C, Gorbach SL et al (2014) Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J Infect Dis 209(9):1446–1451

    Article  CAS  PubMed  Google Scholar 

  28. Dettman JR, Rodrigue N, Aaron SD, Kassen R (2013) Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 110(52):21065–21070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bryant JM, Harris SR, Parkhill J, Dawson R, Diacon AH, van Helden P et al (2013) Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir Med 1(10):786–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menzies D (2013) Molecular methods for tuberculosis trials: time for whole-genome sequencing? Lancet Respir Med 1(10):759–761

    Article  PubMed  Google Scholar 

  31. Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M et al (2013) Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 45(10):1190–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337

    Article  PubMed  Google Scholar 

  33. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD, Warren RM (2011) Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberc Edinb Scotl 91(6):510–523

    CAS  Google Scholar 

  34. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T et al (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45(7):784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boolchandani M, D’Souza AW, Dantas G (2019) Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20(6):356–370

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mason A, Foster D, Bradley P, Golubchik T, Doumith M, Gordon NC et al (2018) Accuracy of different bioinformatics methods in detecting antibiotic resistance and virulence factors from Staphylococcus aureus whole-genome sequences. J Clin Microbiol 56(9)

    Google Scholar 

  37. Underwood AP, Mulder A, Gharbia S, Green J (2005) Virulence Searcher: a tool for searching raw genome sequences from bacterial genomes for putative virulence factors. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 11(9):770–772

    CAS  Google Scholar 

  38. Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Saha S, Raghava GPS (2007) BTXpred: prediction of bacterial toxins. In Silico Biol 7(4–5):405–412

    CAS  PubMed  Google Scholar 

  40. Sachdeva G, Kumar K, Jain P, Ramachandran S (2005) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinforma Oxf Engl. 21(4):483–491

    Article  CAS  Google Scholar 

  41. Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM et al (2015) PhyResSE: a web tool delineating mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol 53(6):1908–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063

    Article  CAS  PubMed  Google Scholar 

  43. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA et al (2017) ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genomics 3(10):e000131

    Article  Google Scholar 

  46. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H et al (2014) Benchmarking of methods for genomic taxonomy. J Clin Microbiol 52(5):1529–1539

    Article  PubMed  PubMed Central  Google Scholar 

  47. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ, Tomita T et al (2014) SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 6(11):90

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chowdhury AS, Call DR, Broschat SLPARGT (2020) a software tool for predicting antimicrobial resistance in bacteria. Sci Rep 10(1):11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I et al (2019) Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 63(11)

    Google Scholar 

  50. Kim J, Greenberg DE, Pifer R, Jiang S, Xiao G, Shelburne SA et al (2020) VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLoS Comput Biol 16(1):e1007511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Clausen PTLC, Aarestrup FM, Lund O (2018) Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 19(1):307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48(D1):D517–D525

    CAS  PubMed  Google Scholar 

  53. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L et al (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58(1):212–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37(Database issue):D443–D447

    Article  CAS  PubMed  Google Scholar 

  55. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e2

    Article  PubMed  CAS  Google Scholar 

  56. Flandrois J-P, Lina G, Dumitrescu O (2014) MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinformatics 15:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Scaria J, Chandramouli U, Verma SK (2005) Antibiotic Resistance Genes Online (ARGO): a Database on vancomycin and beta-lactam resistance genes. Bioinformation 1(1):5–7

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tsafnat G, Copty J, Partridge SR. RAC (2011) Repository of antibiotic resistance cassettes. Database J Biol Databases Curation 2011:bar054

    Google Scholar 

  59. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y et al (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33(Database issue):D325–D328

    Article  CAS  PubMed  Google Scholar 

  60. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y et al (2019) Victors: a web-based knowledge base of virulence factors in human and animal pathogens. Nucleic Acids Res 47(D1):D693–D700

    Article  CAS  PubMed  Google Scholar 

  61. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PathogenFinde—distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8(10):e77302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC et al (2010) T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res 38(Database issue):D781–D786

    Article  CAS  PubMed  Google Scholar 

  63. Chakraborty A, Ghosh S, Chowdhary G, Maulik U, Chakrabarti S (2012) DBETH: a database of bacterial exotoxins for human. Nucleic Acids Res 40(Database issue):D615–D620

    Article  CAS  PubMed  Google Scholar 

  64. Racz R, Chung M, Xiang Z, He Y (2013) Systematic annotation and analysis of “virmugens”-virulence factors whose mutants can be used as live attenuated vaccines. Vaccine 31(5):797–805

    Article  CAS  PubMed  Google Scholar 

  65. Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M et al (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36(Database issue):D572–D576

    CAS  PubMed  Google Scholar 

  66. Snyder EE, Kampanya N, Lu J, Nordberg EK, Karur HR, Shukla M et al (2007) PATRIC: the VBI PathoSystems Resource Integration Center. Nucleic Acids Res 35(Database issue):D401–D406

    Article  CAS  PubMed  Google Scholar 

  67. Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T (2007) MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35(Database issue):D391–D394

    Article  CAS  PubMed  Google Scholar 

  68. Cui G, Fang C, Han K (2012) Prediction of protein-protein interactions between viruses and human by an SVM model. BMC Bioinformatics 13 Suppl 7(Suppl 7):S5

    Google Scholar 

  69. Deelder W, Christakoudi S, Phelan J, Benavente ED, Campino S, McNerney R et al (2019) Machine learning predicts accurately mycobacterium tuberculosis drug resistance from whole genome sequencing data. Front Genet 10:922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jamal S, Khubaib M, Gangwar R, Grover S, Grover A, Hasnain SE (2020) Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis. Sci Rep. 10(1):5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moradigaravand D, Palm M, Farewell A, Mustonen V, Warringer J, Parts L (2018) Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput Biol 14(12):e1006258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pincus NB, Ozer EA, Allen JP, Nguyen M, Davis JJ, Winter DR et al (2020) A genome-based model to predict the virulence of Pseudomonas aeruginosa isolates. mBio 11(4)

    Google Scholar 

  73. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chiapello H, Bourgait I, Sourivong F, Heuclin G, Gendrault-Jacquemard A, Petit M-A et al (2005) Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops. BMC Bioinformatics 6:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiapello H, Gendrault A, Caron C, Blum J, Petit M-A, El Karoui MMOSAIC (2008) an online database dedicated to the comparative genomics of bacterial strains at the intra-species level. BMC Bioinformatics 9:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yoon SH, Park Y-K, Kim JF (2015) PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res 43(Database issue):D624–D630

    Article  CAS  PubMed  Google Scholar 

  77. Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31(1):187–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45(W1):W30–W35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pundhir S, Vijayvargiya H, Kumar A (2008) PredictBias: a server for the identification of genomic and pathogenicity islands in prokaryotes. In Silico Biol 8(3–4):223–234

    CAS  PubMed  Google Scholar 

  80. Hudson CM, Lau BY, Williams KP (2015) Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res 43(Database issue):D48–D53

    Article  CAS  PubMed  Google Scholar 

  81. Ou H-Y, He X, Harrison EM, Kulasekara BR, Thani AB, Kadioglu A et al (2007) MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res 35(Web Server issue):W97–W104

    Article  PubMed  PubMed Central  Google Scholar 

  82. Niu C, Yu D, Wang Y, Ren H, Jin Y, Zhou W et al (2013) Common and pathogen-specific virulence factors are different in function and structure. Virulence 4(6):473–482

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dubern J-F, Cigana C, De Simone M, Lazenby J, Juhas M, Schwager S et al (2015) Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific. Environ Microbiol 17(11):4379–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bidmos FA, Bayliss CD (2014) Genomic and global approaches to unravelling how hypermutable sequences influence bacterial pathogenesis. Pathog Basel Switz 3(1):164–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulsum, U., Singh, P.K., Mudliar, S.R., Singh, S. (2021). Geno-informatics for Prediction of Virulence and Drug Resistance in Bacterial Pathogens. In: Hameed, S., Fatima, Z. (eds) Integrated Omics Approaches to Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-0691-5_1

Download citation

Publish with us

Policies and ethics