Skip to main content

A Brief Overview of Swarm Intelligence-Based Algorithms for Numerical Association Rule Mining

  • Chapter
  • First Online:
Applied Optimization and Swarm Intelligence

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

Abstract

Numerical Association Rule Mining is a popular variant of Association Rule Mining, where numerical attributes are handled without discretization. This means that the algorithms for dealing with this problem can operate directly, not only with categorical, but also with numerical attributes. Until recently, a big portion of these algorithms were based on a stochastic nature-inspired population-based paradigm. As a result, evolutionary and swarm intelligence-based algorithms showed big efficiency for dealing with the problem. In line with this, the main mission of this chapter is to make a historical overview of swarm intelligence-based algorithms for Numerical Association Rule Mining, as well as to present the main features of these algorithms for the observed problem. A taxonomy of the algorithms was proposed on the basis of the applied features found in this overview. Challenges, waiting in the future, finish this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scholar.google.com/.

  2. 2.

    www.scopus.com.

  3. 3.

    https://ieeexplore.ieee.org/Xplore/home.jsp.

References

  1. Agarwal R, Srikant R et al (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB conference, pp 487–499

    Google Scholar 

  2. Akyol S, Alataş B (2016) Kedi sürüsü optimizasyon algoritmasıyla doğru ve anlaşılabilir nümerik sınıflandırma kurallarının otomatik keşfi. J Fac Eng Archit Gazi Univ 31(4):839–857

    Google Scholar 

  3. Alatas B, Akin E (2008) Rough particle swarm optimization and its applications in data mining. Soft Comput 12(12):1205–1218

    Article  Google Scholar 

  4. Alatas B, Akin E (2009) Multi-objective rule mining using a chaotic particle swarm optimization algorithm. Knowl-Based Syst 22(6):455–460

    Article  Google Scholar 

  5. Alatas B, Akin E, Karci A (2008) MODENAR: multi-objective differential evolution algorithm for mining numeric association rules. Appl Soft Comput 8(1):646–656

    Article  Google Scholar 

  6. Alpaydin E (2016) Machine learning: the new AI. MIT press

    Google Scholar 

  7. Altay EV, Alatas B (2019) Performance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule mining. J Ambient Intell Humaniz Comput 1–21

    Google Scholar 

  8. Beiranvand V, Mobasher-Kashani M, Bakar AA (2014) Multi-objective PSO algorithm for mining numerical association rules without a priori discretization. Expert Syst Appl 41(9):4259–4273

    Article  Google Scholar 

  9. Blum C, Merkle D (2008) Swarm intelligence. In: Blum C, Merkle D (eds) Swarm intelligence in optimization, pp 43–85

    Google Scholar 

  10. Chalmers D (2009) The singularity: a philosophical analysis. In: Science fiction and philosophy: from time travel to superintelligence, pp 171–224

    Google Scholar 

  11. Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence, pp 854–858. Springer (2006)

    Google Scholar 

  12. Deb K, Kalyanmoy D (2001) Multi-objective optimization using evolutionary algorithms. Wiley, USA

    MATH  Google Scholar 

  13. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  14. Fister I, Fister Jr, I, Fister D (2019) Computational intelligence in sports. Springer

    Google Scholar 

  15. Fister I Jr, Fister I (2017) Algoritem batminer za rudarjenje asociativnih pravil. Presek 44(5):26–29

    Google Scholar 

  16. Fister Jr, I Iglesias A, Galvez A, Del Ser J, Osaba E, Fister I (2018) Differential evolution for association rule mining using categorical and numerical attributes. In: International conference on intelligent data engineering and automated learning, pp 79–88

    Google Scholar 

  17. Fister I Jr, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektrotehniški vestnik 80(3):116–122

    MATH  Google Scholar 

  18. Ghosh A, Nath B (2004) Multi-objective rule mining using genetic algorithms. Inf Sci 163(1–3):123–133

    Google Scholar 

  19. Heraguemi KE, Kamel N, Drias H (2018) Multi-objective bat algorithm for mining numerical association rules. Int J Bio-Inspir Comput 11(4):239–248

    Article  Google Scholar 

  20. Kennedy I, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

    Google Scholar 

  21. Kuo R, Gosumolo M, Zulvia FE (2019) Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining. Neural Comput Appl 31(8):3559–3572

    Article  Google Scholar 

  22. Lipson H, Kurman M (2016) Driverless: intelligent cars and the road ahead. MIT Press

    Google Scholar 

  23. Liu B, Hsu W, Ma Y et al (1998) Integrating classification and association rule mining. KDD 98:80–86

    Google Scholar 

  24. Minaei-Bidgoli B, Barmaki R, Nasiri M (2013) Mining numerical association rules via multi-objective genetic algorithms. Inf Sci 233:15–24

    Article  Google Scholar 

  25. Moslehi P, Bidgoli BM, Nasiri M, Salajegheh A (2011) Multi-objective numeric association rules mining via ant colony optimization for continuous domains without specifying minimum support and minimum confidence. Int J Comput Sci Issues (IJCSI) 8(5):34

    Google Scholar 

  26. Russell S, Norvig P (2002) Artificial intelligence: a modern approach

    Google Scholar 

  27. Rusu O, Halcu I, Grigoriu O, Neculoiu G, Sandulescu V, Marinescu M, Marinescu V (2013) Converting unstructured and semi-structured data into knowledge. In: 2013 11th RoEduNet international conference. IEEE, pp 1–4

    Google Scholar 

  28. Schmid D (2019) Microsoft academic graph. https://doi.org/10.5281/zenodo.2628216

  29. Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BJ, Wang K (2015) An overview of microsoft academic service (MAS) and applications. In: Proceedings of the 24th international conference on world wide web, pp 243–246

    Google Scholar 

  30. Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. SIGMOD Rec 25(2):1–12

    Google Scholar 

  31. Tahyudin I, Nambo H (2017) The combination of evolutionary algorithm method for numerical association rule mining optimization. In: Proceedings of the tenth international conference on management science and engineering management. Springer, pp 13–23

    Google Scholar 

  32. Tahyudin I, Nambo H (2019) Improved optimization of numerical association rule mining using hybrid particle swarm optimization and cauchy distribution. Int J Electr Comput Eng, 9(2):2088–8708

    Google Scholar 

  33. Tahyudin I, Nambo H et al (2019) Predicting human position using improved numerical association analysis for bioelectric potential data. In: Future of information and communication conference. Springer, pp 655–666

    Google Scholar 

  34. Tegmark M (2017) Life 3.0: being human in the age of artificial intelligence. Knopf

    Google Scholar 

  35. Yang X-S (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspir Comput 3(5):267–274

    Google Scholar 

  36. Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fister Jr., I., Fister, I. (2021). A Brief Overview of Swarm Intelligence-Based Algorithms for Numerical Association Rule Mining. In: Osaba, E., Yang, XS. (eds) Applied Optimization and Swarm Intelligence. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-16-0662-5_3

Download citation

Publish with us

Policies and ethics