Skip to main content

Swarm Intelligence Based Optimum Design of Deep Excavation Systems

  • Chapter
  • First Online:
Applied Optimization and Swarm Intelligence

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

  • 364 Accesses

Abstract

In this chapter, the design of deep excavation system for single row anchor sheet piles, which is ensured the necessary stability conditions of geotechnical and structural with FHWA-IF-99-015, is investigated by utilizing a particle swarm optimization. Some parametric analyses considering various design cases have been conducted to examine alternation of the dimensions of the sheet wall design in the cohesionless soil. Different values of the depth excavation and the angle of internal friction have been taken into consideration to evaluate in terms of the parametric effect. As a result, safe and economical sheet wall designs with single row anchor has been acquired for the discrete design parameters which are the depth anchor; the horizontal distance between anchors, anchor inclination, anchor bond length and the number of strands in an anchor. Design examples with the proposals of the different design cases have been submitted, indicating that the algorithm developed is the most robust and efficient method in solving deep excavation systems optimizations problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das B (2007) Principles of foundation engineering, 6th edn. Thomson

    Google Scholar 

  2. Goldberg DE (1989) Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex Syst 3:129–152

    MATH  Google Scholar 

  3. Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. BioSystems 43:73–81. https://doi.org/10.1016/S0303-2647(97)01708-5

    Article  Google Scholar 

  4. Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–277. https://doi.org/10.1080/03052150500467430

    Article  Google Scholar 

  5. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech Rep TR06. Erciyes University Turkey

    Google Scholar 

  6. Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms, pp 169–178

    Google Scholar 

  7. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput J 11:5508–5518. https://doi.org/10.1016/j.asoc.2011.05.008

    Article  Google Scholar 

  8. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González J.R., Pelta D.A., Cruz C., Terrazas G., Krasnogor N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6

  9. Rao RV (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput 11:107–130. https://doi.org/10.5267/j.ijiec.2019.6.002

    Article  Google Scholar 

  10. Saka MP, Carbas S, Aydogdu I, Akin A (2016) Use of swarm intelligence in structural steel design optimization. Model Optim Sci Technol 7:43–73. https://doi.org/10.1007/978-3-319-26245-1_3

    Article  Google Scholar 

  11. Khajehzadeh M, Eslami M (2012) Gravitational search algorithm for optimization of retaining structures. Indian J Sci Technol 5:1821–1827. https://doi.org/10.17485/ijst/2012/v5i1.7

    Article  Google Scholar 

  12. Slowik A (2020) Swarm intelligence algorithms: modifications and applications. CRC Press

    Google Scholar 

  13. Gandomi AH, Kashani AR, Roke DA, Mousavi M (2015) Optimization of retaining wall design using recent swarm intelligence techniques. Eng Struct 103:72–84. https://doi.org/10.1016/j.engstruct.2015.08.034

    Article  Google Scholar 

  14. Ahmadi-Nedushan B, Varaee H (2009) Optimal design of reinforced concrete retaining walls using a swarm intelligence technique. Proc First Int Conf Soft Comput Technol Civil Struct Environ Eng 92:1–12. https://doi.org/10.4203/ccp.92.26

    Article  Google Scholar 

  15. Kennedy J, Eberhart R, Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks. IEEE, pp 1942–1948

    Google Scholar 

  16. Hajihassani M, Jahed Armaghani D, Kalatehjari R (2018) Applications of particle swarm optimization in geotechnical engineering: a comprehensive review. Geotech Geol Eng 36:705–722. https://doi.org/10.1007/s10706-017-0356-z

    Article  Google Scholar 

  17. Kalatehjari R, Ali N, Kholghifard M, Hajihassani M, The effects of method of generating circular slip surfaces on determining the critical slip surface by particle swarm optimization. Springer. https://doi.org/10.1007/s12517-013-0922-5

  18. Cheng YM, Li L, Chi SC, Wei WB (2007) Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput Geotech 34:92–103. https://doi.org/10.1016/j.compgeo.2006.10.012

  19. Ismail A, Jeng DS (2012) Empirical method for settlement prediction of single piles using higher order neural network and particle swarm optimization. In: Geotechnical Special Publication, pp 285–294. https://doi.org/10.1061/9780784412121.030

  20. Armaghani DJ, Raja NSBSSR, Faizi K, Ahmad RSA (2072) Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput Appl 28. https://doi.org/10.1007/s00521-015-2072-z

  21. Babanouri N, Nasab S, Sarafrazi S (2013) A hybrid particle swarm optimization and multi-layer perceptron algorithm for bivariate fractal analysis of rock fractures roughness. International Journal of Rock Mechanics and Mining Sciences 60:66-74. https://doi.org/10.1016/j.ijrmms.2012.12.028

  22. Sheikholeslami R, Gholipour Khalili B, Zahrai SM (2014) Optimum cost design of reinforced concrete retaining walls using hybrid firefly algorithm. Int J Eng Technol 6:465–470. https://doi.org/10.7763/IJET.2014.V6.742

    Article  Google Scholar 

  23. Jiang A, Wen Z (2011) Optimizing supporting parameters of metro tunnel based on improved particle swarm optimization arithmetic. Procedia Eng 15:4857–4861. https://doi.org/10.1016/j.proeng.2011.08.906

    Article  Google Scholar 

  24. Yagiz S, Karahan H (2011) Prediction of hard rock TBM penetration rate using particle swarm optimization. Int J Rock Mech Min Sci 48:427–433. https://doi.org/10.1016/j.ijrmms.2011.02.013

  25. Sadoghi Yazdi J, Kalantary F, Sadoghi Yazdi H (2012) Calibration of soil model parameters using particle swarm optimization. International Journal of Geomechanics 12: 229-238. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000142

  26. Yunkai L, Yingjie T, Zhiyun O, Lingyan W, Tingwu X, Peiling Y, Huanxun Z (2010) Analysis of soil erosion characteristics in small watersheds with particle swarm optimization, support vector machine, and artificial neuronal networks. Environ Earth Sci 60:1559–1568. https://doi.org/10.1007/s12665-009-0292-1

    Article  Google Scholar 

  27. Puller M (2003) Deep excavations: a practical manual-Thomas Telford

    Google Scholar 

  28. López S, Sanhueza C, Candia G (2017) Anchored piles in deep excavations: a case study. In 16th World Conference on Earthquake Engineering

    Google Scholar 

  29. Amer HAR (2013) Effect of wall penetration depth on the behavior of sheet pile walls. The University of Dayton, PhD Thesis

    Google Scholar 

  30. Day RA, Potts DM (1993) Modelling sheet pile retaining walls. Comput Geotech 15:125–143. https://doi.org/10.1016/0266-352X(93)90009-V

    Article  Google Scholar 

  31. Das MR, Das SK (2015) Optimal design of sheet pile wall embedded in clay. J Inst Eng Ser A 96:249–258. https://doi.org/10.1007/s40030-015-0128-9

    Article  Google Scholar 

  32. Yazici MF, Keskin SN (2019) İki ankrajlı çelik palplanş sisteminin optimum tasarımı. J Grad Sch Nat Appl Sci Mehmet Akif Ersoy Univ 10:34–50. https://doi.org/10.29048/makufebed.536561

    Google Scholar 

  33. Sabatini PJ, Pass DG, Bachus RC (1999) Geotechnical engineering circular no. 4: ground anchors and anchored systems FHWA-IF-99-015

    Google Scholar 

  34. Bekdaş G, Arama ZA, Kayabekir AE, Geem ZW (2020) Optimal design of cantilever soldier pile retaining walls embedded in frictional soils with harmony search algorithm. Appl Sci 10. https://doi.org/10.3390/app10093232

  35. Dinakar KN, Prasad S (2014) Behaviour of tie back sheet pile wall for deep excavation using plaxis. Int J Res Eng Technol 3:97-103  

    Google Scholar 

  36. 19 m deep excavation in Tirana Albania—deep excavation. https://www.deepexcavation.com/en/deep-excavation-tirana-albania. Accessed 17 Oct 2020

  37. Geotechnical Software GEO5

    Google Scholar 

  38. Steel U (1972) Steel sheet piling design manual

    Google Scholar 

  39. Terzaghi K, Peck RB, Wiley J, York N, London S (1996) Soil mechanics in engineering practice, 2nd edn

    Google Scholar 

  40. Rankine W (1857) Earth pressure theory. Phil Trans R Soc

    Google Scholar 

  41. Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes

    Google Scholar 

  42. Uray E, Tan Ö, Çarbaş S, Erkan H (2021) Metaheuristics-based pre-design guide for cantilever retaining walls. Tek Dergi 32. https://doi.org/10.18400/tekderg.561956

  43. Arrays TO (2014) Taguchi orthogonal arrays. Lecture Notes Pennsylvania State Univiversity, pp 4–6

    Google Scholar 

  44. Bonabeau E, Meyer C (2001) Swarm intelligence: a whole new way to think about business. Harv Bus Rev 79: 106-115

    Google Scholar 

  45. Yang XS, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: An overview. Elsevier  3-23. https://doi.org/10.1016/B978-0-12-405163-8.00001-6

  46. Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Zhang X (2014) Swarm intelligence and its applications. Sci. World J. https://doi.org/10.1155/2013/528069

  47. Garnier S, Gautrais J, Theraulaz G (2007) The biological principles of swarm intelligence. Swarm Intell 1:3–31. https://doi.org/10.1007/s11721-007-0004-y

    Article  Google Scholar 

  48. Slowik A (2020) Swarm intelligence algorithms: modifications and applications, 1st edn. CRC Press

    Google Scholar 

  49. Chu SC, Huang HC, Roddick JF, Pan JS (2011) Overview of algorithms for swarm intelligence. In: Jędrzejowicz P, Nguyen NT, Hoang K (eds) Computational collective intelligence. technologies and applications. ICCCI 2011. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 28–41

    Google Scholar 

  50. Ab Wahab MN, Nefti-Meziani S, Atyabi A (2015) A comprehensive review of swarm optimization algorithms. PLoS ONE 10:e0122827. https://doi.org/10.1371/journal.pone.0122827

    Article  Google Scholar 

  51. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, SIGGRAPH 1987. Association for Computing Machinery Inc, pp 25–34

    Google Scholar 

  52. Heppner FH, Grenander U (1990) A stochastic nonlinear model for coordinate bird flocks. In: Krasner S (ed) The ubiquity of chaos. AAAS Publications

    Google Scholar 

  53. Van Den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci (Ny) 176:937–971. https://doi.org/10.1016/j.ins.2005.02.003

    Article  MathSciNet  MATH  Google Scholar 

  54. Tillett JC, Sahin F, Rao R (2005) Darwinian particle swarm optimization. In: Proceedings of the 2nd Indian international conference on artificial intelligence. Punei India

    Google Scholar 

  55. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73. https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  56. Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the 2002 congress on evolutionary computation, CEC 2002. IEEE Computer Society, pp 1582–1587

    Google Scholar 

  57. Uray E (2020) Ulusal Tez Merkezi, optimum design of retaining structures by using heuristic methods. In: PhD thesis, Konya Tek. University. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. Accessed 28 Oct 2020

  58. Littlejohn GS, Design estimation of the ultimate load-holding capacity of ground anchors

    Google Scholar 

  59. Fishburn PC (1967) Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments. ORSA Publication, Baltimore

    Google Scholar 

  60. Triantaphyllou E (2000) Multi-criteria decision making methods. researchgate.net 5–21. https://doi.org/10.1007/978-1-4757-3157-6_2

  61. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  62. Carbas S, Saka MP (2013) Efficiency of improved harmony search algorithm for solving engineering optimization problems. Iran Univ Sci Technol 3:99–114

    Google Scholar 

  63. Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2010) Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Computers & Structures 88: 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006

  64. Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2009) Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Computers & Structures 87: 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002

  65. Jellali B, Frikha W (2017) Constrained particle swarm optimization algorithm applied to slope stability. Int J Geomech 17:1–6. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Uray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uray, E., Çarbaş, S. (2021). Swarm Intelligence Based Optimum Design of Deep Excavation Systems. In: Osaba, E., Yang, XS. (eds) Applied Optimization and Swarm Intelligence. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-16-0662-5_10

Download citation

Publish with us

Policies and ethics