Skip to main content

Applied Optimization and Swarm Intelligence: A Systematic Review and Prospect Opportunities

  • Chapter
  • First Online:
Applied Optimization and Swarm Intelligence

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

Abstract

Optimization is one of the most studied fields within the wider area of artificial intelligence. In the current literature, hundreds of works can be found focused on solving many diverse problems of this kind by resorting to a vast spectrum of solvers. In this context, Swarm Intelligence methods have gained significant popularity in the related community, maintaining a constant momentum in recent years, and having been applied to problems coming from a wide variety of real-world contexts. This chapter contributes to this line by presenting a systematic overview of Swarm Intelligence solvers applied to different branches of optimization problems. To do that, we have focused our attention on four of the most intensively studied application fields: transportation, energy, medicine, and industry. Apart from this systematic review, we also share in this paper our envisioned status of this area, by identifying the most interesting opportunities. These open challenges should stimulate the scientific efforts made by the community in the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy J (2006) Swarm intelligence. In: Handbook of nature-inspired and innovative computing. Springer, pp. 187–219

    Google Scholar 

  2. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello CAC, Herrera F (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evolut. Comput. 48:220–250

    Article  Google Scholar 

  3. Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (2013) Swarm intelligence and bio-inspired computation: theory and applications. Newnes

    Google Scholar 

  4. Kennedy J (2010) Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766

    Google Scholar 

  5. Dorigo M. Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2. IEEE, pp 1470–1477

    Google Scholar 

  6. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution

    Google Scholar 

  7. Schwefel HPP (1993) Evolution and optimum seeking: the sixth generation. Wiley

    Google Scholar 

  8. Rechenberg I (1973) Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog Stuttg 104:15–16

    Google Scholar 

  9. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence

    Google Scholar 

  10. Ertenlice O, Kalayci CB (2018) A survey of swarm intelligence for portfolio optimization: algorithms and applications. Swarm Evolut Comput 39:36–52

    Google Scholar 

  11. Yuan S, Wang S, Tian N (2009) Swarm intelligence optimization and its application in geophysical data inversion. Appl Geophys 6(2):166–174

    Article  Google Scholar 

  12. Del Ser J, Osaba E, Sanchez-Medina JJ, Fister I (2019) Bioinspired computational intelligence and transportation systems: a long road ahead. IEEE Trans Intell Transp Syst

    Google Scholar 

  13. Brezočnik L, Fister I, Podgorelec V (2018) Swarm intelligence algorithms for feature selection: a review. Appl Sci 8(9):1521

    Article  Google Scholar 

  14. Mavrovouniotis M, Li C, Yang S (2017) A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evolut Comput 33:1–17

    Article  Google Scholar 

  15. Yang F, Wang P, Zhang Y, Zheng L, Lu J (2017) Survey of swarm intelligence optimization algorithms. In: 2017 IEEE international conference on unmanned systems (ICUS). IEEE, pp 544–549

    Google Scholar 

  16. Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: a survey. Int J Bio-Insp Comput 3(1):1–16

    Article  Google Scholar 

  17. Yang XS (2014) Swarm intelligence based algorithms: a critical analysis. Evolut intell 7(1):17–28

    Article  Google Scholar 

  18. Birbil Şİ, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  19. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  20. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Str 112:283–294

    Article  Google Scholar 

  21. Rbouh I, El Imrani AA (2014) Hurricane-based optimization algorithm. AASRI Procedia 6:26–33

    Article  Google Scholar 

  22. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  23. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Str 110:151–166

    Article  Google Scholar 

  24. Salcedo-Sanz S (2016) Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures. Phys Rep 655:1–70

    Article  MathSciNet  Google Scholar 

  25. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing. IEEE, pp 210–214

    Google Scholar 

  26. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Insp Comput 2(2):78–84

    Article  Google Scholar 

  28. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

    Google Scholar 

  29. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  30. Salcedo-Sanz S (2017) A review on the coral reefs optimization algorithm: new development lines and current applications. Progress Artif Intell 6(1):1–15

    Article  Google Scholar 

  31. Martín A, Vargas VM, Gutiérrez PA, Camacho D, Hervás-Martínez C (2020) Optimising convolutional neural networks using a hybrid statistically-driven coral reef optimisation algorithm. Appl Soft Comput 90:106144

    Article  Google Scholar 

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  33. Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, pp 854–858

    Google Scholar 

  34. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47

    Article  Google Scholar 

  35. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67

    Article  Google Scholar 

  36. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, pp 240–249

    Google Scholar 

  37. Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713

    Article  Google Scholar 

  38. Cortés P, García JM, Onieva L, Muñuzuri J, Guadix J (2008) Viral system to solve optimization problems: An immune-inspired computational intelligence approach. In: International Conference on artificial immune systems. Springer, pp 83–94

    Google Scholar 

  39. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE congress on evolutionary computation, (CEC). IEEE, pp 4661–4667

    Google Scholar 

  40. Borji A, Hamidi M (2009) A new approach to global optimization motivated by parliamentary political competitions. Int J Innov Comput Inf Control 5(6):1643–1653

    Google Scholar 

  41. Huan TT, Kulkarni AJ, Kanesan J, Huang CJ, Abraham A (2017) Ideology algorithm: a socio-inspired optimization methodology. Neural Comput Appl 28(1):845–876

    Article  Google Scholar 

  42. Ahmadi-Javid A (2011) Anarchic society optimization: a human-inspired method. In: ieee congress on evolutionary computation (CEC), IEEE, pp 2586–2592

    Google Scholar 

  43. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evolut Comput 7(4):386–396

    Article  Google Scholar 

  44. Duarte A, Fernández F, Sánchez Á, Sanz A (2004) A hierarchical social metaheuristic for the max-cut problem. In: European conference on evolutionary computation in combinatorial optimization. Springer, pp 84–94

    Google Scholar 

  45. Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1672–1678

    Google Scholar 

  46. Osaba E, Díaz F, Carballedo R, Onieva E, Perallos A (2014) Focusing on the golden ball metaheuristic: an extended study on a wider set of problems. Sci World J

    Google Scholar 

  47. Osaba E, Diaz F, Onieva E (2013) A novel meta-heuristic based on soccer concepts to solve routing problems. In: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp 1743–1744

    Google Scholar 

  48. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27(4):419–440

    Article  Google Scholar 

  49. Moosavian N, Roodsari BK et al (2013) Soccer league competition algorithm, a new method for solving systems of nonlinear equations. Int J Intell Sci 4(01):7

    Article  Google Scholar 

  50. Shi Y (2011) Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer, pp 303–309

    Google Scholar 

  51. Yampolskiy RV, El-Barkouky A (2011) Wisdom of artificial crowds algorithm for solving NP-hard problems. Int J Bio-Insp Comput 3(6):358–369

    Article  Google Scholar 

  52. Wang J, Cao Y, Li B, Kim HJ, Lee S (2017) Particle swarm optimization based clustering algorithm with mobile sink for WSNS. Future Gener Comput Syst 76, pp 452–457

    Google Scholar 

  53. Yu H, Tan Y, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted hierarchical particle swarm optimization. Inf Sci 454:59–72

    Article  MathSciNet  Google Scholar 

  54. Aydilek IB (2018) A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput 66:232–249

    Article  Google Scholar 

  55. Kiran MS (2017) Particle swarm optimization with a new update mechanism. Appl Soft Comput 60:670–678

    Article  Google Scholar 

  56. Chen X, Tianfield H, Mei C, Du W, Liu G (2017) Biogeography-based learning particle swarm optimization. Soft Comput 21(24):7519–7541

    Article  Google Scholar 

  57. Nouiri M, Bekrar A, Jemai A, Niar S, Ammari AC (2018) An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. J Intell Manuf 29(3):603–615

    Google Scholar 

  58. Wang ZJ, Zhan ZH, Kwong S, Jin H, Zhang J (2020) Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans Cybern

    Google Scholar 

  59. Jensi R, Jiji GW (2016) An enhanced particle swarm optimization with levy flight for global optimization. Appl Soft Comput 43:248–261

    Article  Google Scholar 

  60. Piotrowski AP, Napiorkowski JJ (2020) Piotrowska. Population size in particle swarm optimization. Swarm Evolut Comput AE, 100718

    Google Scholar 

  61. Ünal AN, Kayakutlu G (2020) Multi-objective particle swarm optimization with random immigrants. Complex Intell Syst 1–16

    Google Scholar 

  62. Dabhi D, Pandya K (2020) Enhanced velocity differential evolutionary particle swarm optimization for optimal scheduling of a distributed energy resources with uncertain scenarios. IEEE Access 8:27001–27017

    Article  Google Scholar 

  63. Deng W, Xu J, Zhao H (2019) An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 7:20281–20292

    Article  Google Scholar 

  64. Uthayakumar J, Metawa N, Shankar K, Lakshmanaprabu S (2020) Financial crisis prediction model using ant colony optimization. Int J Inf Manage 50:538–556

    Article  Google Scholar 

  65. Jovanovic R, Tuba M, Voß S (2019) An efficient ant colony optimization algorithm for the blocks relocation problem. Euro J Oper Res 274(1):78–90

    Article  MathSciNet  MATH  Google Scholar 

  66. Asghari S, Navimipour NJ (2019) Resource discovery in the peer to peer networks using an inverted ant colony optimization algorithm. Peer-to-Peer Netw Appl 12(1):129–142

    Article  Google Scholar 

  67. Yang Q, Chen WN, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2016) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evolut Comput 21(2):191–205

    Article  Google Scholar 

  68. Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUS. Future Gener Comput Syst 79:473–487

    Article  Google Scholar 

  69. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. In: Handbook of metaheuristics. Springer, pp 311–351

    Google Scholar 

  70. Gao H, Shi Y, Pun CM, Kwong S (2018) An improved artificial bee colony algorithm with its application. IEEE Trans Ind Inform 15(4):1853–1865

    Article  Google Scholar 

  71. Xue Y, Jiang J, Zhao B, Ma T (2018) A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput 22(9):2935–2952

    Article  Google Scholar 

  72. Jadon SS, Tiwari R, Sharma H, Bansal JC (2017) Hybrid artificial bee colony algorithm with differential evolution. Appl Soft Comput 58:11–24

    Article  Google Scholar 

  73. Sharma TK, Pant M (2017) Shuffled artificial bee colony algorithm. Soft Comput 21(20):6085–6104

    Article  Google Scholar 

  74. Gorkemli B, Karaboga D (2019) A quick semantic artificial bee colony programming (qsABCP) for symbolic regression. Inf Sci 502:346–362

    Article  MathSciNet  Google Scholar 

  75. Li X, Yang G (2016) Artificial bee colony algorithm with memory. Appl Soft Comput 41:362–372

    Article  Google Scholar 

  76. Luo J, Liu Q, Yang Y, Li X, Chen MR, Cao W (2017) An artificial bee colony algorithm for multi-objective optimisation. Appl Soft Comput 50:235–251

    Google Scholar 

  77. Dedeturk BK, Akay B (2020) Spam filtering using a logistic regression model trained by an artificial bee colony algorithm. Appl Soft Comput 106229

    Google Scholar 

  78. Li G, Cui L, Fu X, Wen Z, Lu N, Lu J (2017) Artificial bee colony algorithm with gene recombination for numerical function optimization. Appl Soft Comput 52:146–159

    Google Scholar 

  79. Thirugnanasambandam K, Prakash S, Subramanian V, Pothula S, Thirumal V (2019) Reinforced cuckoo search algorithm-based multimodal optimization. Appl Intell 49(6):2059–2083

    Google Scholar 

  80. Osaba E, Del Ser J, Camacho D, Bilbao MN, Yang XS (2020) Community detection in networks using bio-inspired optimization: latest developments, new results and perspectives with a selection of recent meta-heuristics. Appl Soft Comput 87:106010

    Google Scholar 

  81. Mareli M, Twala B (2018) An adaptive cuckoo search algorithm for optimisation. Appl Comput Inform 14(2):107–115

    Article  Google Scholar 

  82. Pandey AC, Rajpoot DS, Saraswat M (2017) Twitter sentiment analysis using hybrid cuckoo search method. Inf Process Manage 53(4):764–779

    Article  Google Scholar 

  83. Gálvez A, Fister I, Osaba E, Del Ser J, Iglesias A (2019) Cuckoo search algorithm for border reconstruction of medical images with rational curves. In: International conference on swarm intelligence. Springer, pp 320–330

    Google Scholar 

  84. Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285

    Article  Google Scholar 

  85. Cui Z, Sun B, Wang G, Xue Y, Chen J (2017) A novel oriented cuckoo search algorithm to improve DV-hop performance for cyber-physical systems. J Parall Distrib Comput 103:42–52

    Article  Google Scholar 

  86. Yang XS, He XS (2020) Bat algorithm and cuckoo search algorithm. In: Nature-inspired computation and swarm intelligence. Elsevier, pp 19–34

    Google Scholar 

  87. Ouaarab A (2020) Cuckoo search: from continuous to combinatorial. In: Discrete cuckoo search for combinatorial optimization. Springer, pp 31–41

    Google Scholar 

  88. Ouaarab A (2020) DCS applications. In: Discrete cuckoo search for combinatorial optimization. Springer, pp 45–70

    Google Scholar 

  89. Ouaarab A (2020) Random-key cuckoo search (RKCS) applications. In: Discrete cuckoo search for combinatorial optimization. Springer, pp 71–86

    Google Scholar 

  90. Ouaarab A, Ahiod B, Yang XS (2017) Random key cuckoo search for the quadratic assignment problem. Trans Mach Learn Artif Intell 5(4)

    Google Scholar 

  91. Ouaarab A, Ahiod B, Yang XS (2015) Random-key cuckoo search for the travelling salesman problem. Soft Comput 19(4):1099–1106

    Article  Google Scholar 

  92. Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput 61:1041–1059

    Article  Google Scholar 

  93. Sudeeptha J, Nalini C (2019) Hybrid optimization of cuckoo search and differential evolution algorithm for privacy-preserving data mining. In: International conference on artificial intelligence, smart grid and smart city applications. Springer, pp 323–331

    Google Scholar 

  94. Wang H, Wang W, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspir Comput 8(1):33–41

    Article  Google Scholar 

  95. Wang H, Wang W, Zhou X, Sun H, Zhao J, Yu X, Cui Z (2017) Firefly algorithm with neighborhood attraction. Inf Sci 382:374–387

    Article  Google Scholar 

  96. Peng H, Zhu W, Deng C, Wu Z (2020) Enhancing firefly algorithm with courtship learning. Inf Sci

    Google Scholar 

  97. Zhang L, Liu L, Yang XS, Dai Y (2016) A novel hybrid firefly algorithm for global optimization. PLoS One 11(9):e0163230

    Google Scholar 

  98. He L, Huang S (2017) Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 240:152–174

    Article  Google Scholar 

  99. Gálvez A, Iglesias A, Osaba E, Del Ser J (2020) Parametric learning of associative functional networks through a modified memetic self-adaptive firefly algorithm. In: International conference on computational science. Springer, pp 566–579

    Google Scholar 

  100. Xing HX, Wu H, Chen Y, Wang K (2020) A cooperative interference resource allocation method based on improved firefly algorithm. Def Technol

    Google Scholar 

  101. Tilahun SL, Ngnotchouye JMT, Hamadneh NN (2019) Continuous versions of firefly algorithm: a review. Artif Intell Rev 51(3):445–492

    Article  Google Scholar 

  102. Yelghi A, Köse C (2018) A modified firefly algorithm for global minimum optimization. Appl Soft Comput 62:29–44

    Article  Google Scholar 

  103. Chakri A, Khelif R, Benouaret M, Yang XS (2017) New directional bat algorithm for continuous optimization problems. Expert Syst Appl 69:159–175

    Article  Google Scholar 

  104. Adarsh B, Raghunathan T, Jayabarathi T, Yang XS (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675

    Article  Google Scholar 

  105. Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N (2018) Multi-level image thresholding using OTSU and chaotic bat algorithm. Neural Comput Appl 29(12):1285–1307

    Article  Google Scholar 

  106. Al-Betar MA, Awadallah MA (2018) Island bat algorithm for optimization. Expert Syst Appl 107:126–145

    Article  Google Scholar 

  107. Osaba E, Del Ser J, Yang XS, Iglesias A, Galvez A (2020) Coeba: a coevolutionary bat algorithm for discrete evolutionary multitasking. In: International conference on computational science, pp 244–256

    Google Scholar 

  108. Cai X, Wang H, Cui Z, Cai J, Xue Y, Wang L (2018) Bat algorithm with triangle-flipping strategy for numerical optimization. Int J Mach Learn Cybern 9(2):199–215

    Article  Google Scholar 

  109. Yildizdan G, Baykan ÖK (2020) A novel modified bat algorithm hybridizing by differential evolution algorithm. Expert Syst Appl 141:112949

    Article  Google Scholar 

  110. Liang H, Liu Y, Li F, Shen Y (2018) A multiobjective hybrid bat algorithm for combined economic/emission dispatch. Int J Electr Power Energy Syst 101:103–115

    Article  Google Scholar 

  111. Liu Q, Wu L, Xiao W, Wang F, Zhang L (2018) A novel hybrid bat algorithm for solving continuous optimization problems. Appl Soft Comput 73:67–82

    Article  Google Scholar 

  112. Gan C, Cao WH, Liu KZ, Wu M, Wang FW, Zhang SB (2019) A new hybrid bat algorithm and its application to the ROP optimization in drilling processes. IEEE Trans Ind Inform

    Google Scholar 

  113. Yue X, Zhang H (2020) Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation. Appl Soft Comput 90:106157

    Google Scholar 

  114. Cui Z, Li F, Zhang W (2019) Bat algorithm with principal component analysis. Int J Mach Learn Cybern 10(3):603–622

    Article  Google Scholar 

  115. Hong WC, Li MW, Geng J, Zhang Y (2019) Novel chaotic bat algorithm for forecasting complex motion of floating platforms. Appl Math Modell 72:425–443

    Article  MathSciNet  MATH  Google Scholar 

  116. Yang XS (2020) Nature-inspired optimization algorithms: challenges and open problems. J Comput Sci 101104

    Google Scholar 

  117. Chan KY, Dillon T, Chang E, Singh J (2013) Prediction of short-term traffic variables using intelligent swarm-based neural networks. IEEE Trans Control Syst Technol 21(1):263–274

    Article  Google Scholar 

  118. Raza A, Zhong M (2017) Lane-based short-term urban traffic forecasting with GA designed ANN and LWR models. Transp Res Procedia 25:1430–1443

    Article  Google Scholar 

  119. Lopez-Garcia P, Onieva E, Osaba E, Masegosa AD, Perallos A (2016) A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans Intell Transp Syst 17(2):557–569

    Article  Google Scholar 

  120. Hu W, Yan L, Liu K, Wang H (2016) A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process Lett 43(1):155–172

    Article  Google Scholar 

  121. Pan Y, Shi Y (2016) Short-term traffic forecasting based on grey neural network with particle swarm optimization. In: Proceedings of the world congress on engineering and computer science, vol 2 (2016)

    Google Scholar 

  122. Govindan K, Jafarian A, Nourbakhsh V (2019) Designing a sustainable supply chain network integrated with vehicle routing: a comparison of hybrid swarm intelligence metaheuristics. Comput Oper Res 110:220–235

    Article  MathSciNet  MATH  Google Scholar 

  123. Yao B, Yu B, Hu P, Gao J, Zhang M (2016) An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann Oper Res 242(2):303–320

    Article  MathSciNet  MATH  Google Scholar 

  124. Osaba E, Yang XS, Fister I Jr, Del Ser J, Lopez-Garcia P, Vazquez-Pardavila AJ (2019) A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evolut Comput 44:273–286

    Article  Google Scholar 

  125. Osaba E, Del Ser J, Sadollah A, Bilbao MN, Camacho D (2018) A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem. Appl Soft Comput 71:277–290

    Article  Google Scholar 

  126. Huang YH, Blazquez CA, Huang SH, Paredes-Belmar G, Latorre-Nuñez G (2019) Solving the feeder vehicle routing problem using ant colony optimization. Comput Ind Eng 127:520–535

    Article  Google Scholar 

  127. Yao B, Chen C, Song X, Yang X (2019) Fresh seafood delivery routing problem using an improved ant colony optimization. Ann Oper Res 273(1–2):163–186

    Article  MathSciNet  MATH  Google Scholar 

  128. Forcael E, González V, Orozco F, Vargas S, Pantoja A, Moscoso P (2014) Ant colony optimization model for tsunamis evacuation routes. Comput-Aided Civil Infrastr Eng 29(10):723–737

    Article  Google Scholar 

  129. Hajjem M, Bouziri H, Talbi EG, Mellouli K (2017) Parallel ant colony optimization for evacuation planning. In: Proceedings of the genetic and evolutionary computation conference companion. ACM, pp 51–52

    Google Scholar 

  130. Liu M, Zhang F, Ma Y, Pota HR, Shen W (2016) Evacuation path optimization based on quantum ant colony algorithm. Adv Eng Inform 30(3):259–267

    Article  Google Scholar 

  131. Trachanatzi D, Rigakis M, Marinaki M, Marinakis Y (2020) A firefly algorithm for the environmental prize-collecting vehicle routing problem. Swarm Evolut Comput 100712

    Google Scholar 

  132. Osaba E, Yang XS, Diaz F, Onieva E, Masegosa AD, Perallos A (2017) A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput 21(18):5295–5308

    Article  Google Scholar 

  133. Caceres-Cruz J, Arias P, Guimarans D, Riera D, Juan AA (2015) Rich vehicle routing problem: survey. ACM Comput Surv (CSUR) 47(2):32

    Google Scholar 

  134. Maity S, Roy A, Maiti M (2019) A rough multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem. Granul Comput 4(1):125–142

    Article  Google Scholar 

  135. Baldoquin MG, Martinez JA, Díaz-Ramírez J (2020) A unified model framework for the multi-attribute consistent periodic vehicle routing problem. PLoS One 15(8):e0237014

    Article  Google Scholar 

  136. Manne AS (1960) On the job-shop scheduling problem. Oper Res 8(2):219–223

    Article  MathSciNet  Google Scholar 

  137. Phanden RK, Saharan LK, Erkoyuncu JA (2018) Simulation based cuckoo search optimization algorithm for flexible job shop scheduling problem. In: Proceedings of the international conference on intelligent science and technology, pp 50–55

    Google Scholar 

  138. Hu H, Lei W, Gao X, Zhang Y (2018) Job-shop scheduling problem based on improved cuckoo search algorithm. Int J Simul Modell 17(2):337–346

    Article  Google Scholar 

  139. Ouaarab A, Ahiod B, Yang XS, Abbad M (2014) Discrete cuckoo search algorithm for job shop scheduling problem. In: IEEE international symposium on intelligent control (ISIC). IEEE, pp 1872–1876

    Google Scholar 

  140. Dao TK, Pan TS, Pan JS et al (2018) Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J Intell Manuf 29(2):451–462

    Article  Google Scholar 

  141. Chen X, Zhang B, Gao D (2019) An improved bat algorithm for job shop scheduling problem. In: 2019 IEEE international conference on mechatronics and automation (ICMA). IEEE, pp 439–443

    Google Scholar 

  142. Khadwilard A, Chansombat S, Thepphakorn T, Chainate W, Pongcharoen P (2012) Application of firefly algorithm and its parameter setting for job shop scheduling. J Ind Technol 8(1):49–58

    Google Scholar 

  143. Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio-Inspir Comput 7(6):386–401

    Article  Google Scholar 

  144. Gao K, Cao Z, Zhang L, Chen Z, Han Y, Pan Q (2019) A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J Automa Sinica 6(4):904–916

    Article  Google Scholar 

  145. Sun Z, Gu X (2017) Hybrid algorithm based on an estimation of distribution algorithm and cuckoo search for the no idle permutation flow shop scheduling problem with the total tardiness criterion minimization. Sustainability 9(6):953

    Article  Google Scholar 

  146. Jamrus T, Chien CF, Gen M, Sethanan K (2017) Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing. IEEE Trans Semicond Manuf 31(1):32–41

    Article  Google Scholar 

  147. Nouiri M, Bekrar A, Jemai A, Trentesaux D, Ammari AC, Niar S (2017) Two stage particle swarm optimization to solve the flexible job shop predictive scheduling problem considering possible machine breakdowns. Comput Ind Eng 112:595–606

    Article  Google Scholar 

  148. Zhao B, Gao J, Chen K, Guo K (2018) Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines. J Intell Manuf 29(1):93–108

    Article  Google Scholar 

  149. Engin O, Güçlü A (2018) A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems. Appl Soft Comput 72:166–176

    Article  Google Scholar 

  150. Zhong LC, Qian B, Hu R, Zhang CS (2018) The hybrid shuffle frog leaping algorithm based on cuckoo search for flow shop scheduling with the consideration of energy consumption. In: International conference on intelligent computing. Springer, pp 649–658

    Google Scholar 

  151. Beni G, From swarm intelligence to swarm robotics. In: International workshop on swarm robotics. Springer, pp 1–9

    Google Scholar 

  152. Lewkowicz MA, Agarwal R, Chakraborty N (2019) Distributed algorithm for selecting leaders for supervisory robotic swarm control. In: International symposium on multi-robot and multi-agent systems (MRS). IEEE, pp 112–118

    Google Scholar 

  153. Albani D, IJsselmuiden J, Haken R, Trianni V (2017) Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS), IEEE, pp 1–6

    Google Scholar 

  154. Couceiro MS (2017) An overview of swarm robotics for search and rescue applications. In: Artificial intelligence: concepts, methodologies, tools, and applications. IGI Global, pp 1522–1561

    Google Scholar 

  155. de Sá AO, Nedjah N, de Macedo Mourelle L (2016) Distributed efficient localization in swarm robotic systems using swarm intelligence algorithms. Neurocomputing 172:322–336

    Article  Google Scholar 

  156. Carrillo M, Sánchez-Cubillo J, Osaba E, Bilbao MN, Del Ser J (2019) Trophallaxis, low-power vision sensors and multi-objective heuristics for 3D scene reconstruction using swarm robotics. In: International conference on the applications of evolutionary computation (Part of EvoStar). Springer, pp 599–615

    Google Scholar 

  157. Alfeo AL, Cimino MG, De Francesco N, Lega M, Vaglini G (2018) Design and simulation of the emergent behavior of small drones swarming for distributed target localization. J Comput Sci 29:19–33

    Article  Google Scholar 

  158. Leblond I, Tauvry S, Pinto M (2019) Sonar image registration for swarm AUVS navigation: results from swarms project. J Comput Sci, in press

    Google Scholar 

  159. Innocente MS, Grasso P (2019) Self-organising swarms of firefighting drones: harnessing the power of collective intelligence in decentralised multi-robot systems. J Comput Sci 34:80–101

    Article  MathSciNet  Google Scholar 

  160. Huang X, Arvin F, West C, Watson S, Lennox B (2019) Exploration in extreme environments with swarm robotic system. In: 2019 IEEE international conference on mechatronics (ICM), vol 1. IEEE, pp 193–198

    Google Scholar 

  161. Suárez P, Iglesias A (2017) Bat algorithm for coordinated exploration in swarm robotics. In: International conference on harmony search algorithm. Springer, pp 134–144

    Google Scholar 

  162. Carrillo M, Gallardo I, Del Ser J, Osaba E, Sanchez-Cubillo J, Bilbao MN, Gálvez A, Iglesias A (2018) A bio-inspired approach for collaborative exploration with mobile battery recharging in swarm robotics. In: International conference on bioinspired methods and their applications. Springer, pp 75–87

    Google Scholar 

  163. Ramirez-Atencia C, Rodriguez-Fernandez V, Camacho D (2020) A revision on multi-criteria decision making methods for multi-UAV mission planning support. Expert Syst Appl 160:113708

    Article  Google Scholar 

  164. Precup RE, David RC (2019) Nature-inspired optimization algorithms for fuzzy controlled servo systems. Butterworth-Heinemann

    Google Scholar 

  165. Zhang X, Zhang X (2017) Shift based adaptive differential evolution for PID controller designs using swarm intelligence algorithm. Clust Comput 20(1):291–299

    Article  Google Scholar 

  166. Precup RE, David RC, Petriu EM (2016) Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans Ind Electron 64(1):527–534

    Article  Google Scholar 

  167. Precup RE, David RC, Petriu EM, Szedlak-Stinean AI, Bojan-Dragos CA (2016) Grey wolf optimizer-based approach to the tuning of pi-fuzzy controllers with a reduced process parametric sensitivity. IFAC-PapersOnLine 49(5):55–60

    Article  Google Scholar 

  168. Ramirez-Atencia C, Mostaghim S, Camacho D (2020) skpnsga-ii: knee point based moea with self-adaptive angle for mission planning problems. arXiv preprint arXiv:2002.08867

  169. Nithila EE, Kumar S (2017) Automatic detection of solitary pulmonary nodules using swarm intelligence optimized neural networks on CT images. Eng sci technol Int J 20(3):1192–1202

    Google Scholar 

  170. de Pinho Pinheiro CA, Nedjah N, de Macedo Mourelle L (2020) Detection and classification of pulmonary nodules using deep learning and swarm intelligence. Multimed Tools Appl 79(21):15437–15465

    Article  Google Scholar 

  171. Woźniak M, Połap D (2018) Bio-inspired methods modeled for respiratory disease detection from medical images. Swarm Evolut Comput 41:69–96

    Article  Google Scholar 

  172. Gálvez A, Fister Jr, I, Osaba E, Fister I, Ser JD, Iglesias A (2019) Computing rational border curves of melanoma and other skin lesions from medical images with bat algorithm. In: Proceedings of the genetic and evolutionary computation conference companion, pp 1675–1682

    Google Scholar 

  173. Gálvez A, Fister I, Osaba E, Del Ser J, Iglesias A (2019) Hybrid modified firefly algorithm for border detection of skin lesions in medical imaging. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 111–118

    Google Scholar 

  174. Habib M, Aljarah I, Faris H, Mirjalili S (2020) Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis. In: Evolutionary machine learning techniques. Springer, pp 175–201

    Google Scholar 

  175. Abdel-Basset M, Fakhry AE, El-Henawy I, Qiu T, Sangaiah AK (2017) Feature and intensity based medical image registration using particle swarm optimization. J Med Syst 41(12):197

    Article  Google Scholar 

  176. Lin TX, Chang HH (2016) Medical image registration based on an improved ant colony optimization algorithm. Int J Pharma Med Biol Sci 5(1):17–22

    MathSciNet  Google Scholar 

  177. Sarvamangala D, Kulkarni RV (2019) A comparative study of bio-inspired algorithms for medical image registration. In: Advances in intelligent computing. Springer, pp 27–44

    Google Scholar 

  178. Rundo L, Tangherloni A, Militello C, Gilardi MC, Mauri G (2016) Multimodal medical image registration using particle swarm optimization: a review. In: IEEE symposium series on computational intelligence (SSCI). IEEE, pp 1–8

    Google Scholar 

  179. Chen Y, He F, Li H, Zhang D, Wu Y (2020) A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl Soft Comput 106335

    Google Scholar 

  180. Ezzat D, Amin S, Shedeed HA, Tolba MF (2019) A new nano-robots control strategy for killing cancer cells using quorum sensing technique and directed particle swarm optimization algorithm. In: International conference on advanced machine learning technologies and applications. Springer, pp 218–226

    Google Scholar 

  181. Ezzat D, Amin S, Shedeed HA, Tolba MF (2020) Controlling directed particle swarm optimization for delivering nano-robots to cancer cells. In: Joint European-US workshop on applications of invariance in computer vision. Springer, pp 148–158

    Google Scholar 

  182. Lin L, Huang F, Yan H, Liu F, Guo W (2020) Ant-behavior inspired intelligent nanonet for targeted drug delivery in cancer therapy. IEEE Trans NanoBiosci

    Google Scholar 

  183. Ezzat D, Amin S, Shedeed HA, Tolba MF (2020) Directed jaya algorithm for delivering nano-robots to cancer area. Comput Methods Biomechan Biomed Eng 1–11

    Google Scholar 

  184. Shahali S, Rastegar Z (2019) Path optimizing and cell’s deformation in manipulation with AFM nano-robot using genetic algorithm. In: 2019 7th international conference on robotics and mechatronics (ICRoM). IEEE, pp 254–258

    Google Scholar 

  185. Mohamed MA, Eltamaly AM, Alolah AI (2017) Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems. Renew Sustain Energy Rev 77:515–524

    Article  Google Scholar 

  186. Keles C, Alagoz BB, Kaygusuz A (2017) Multi-source energy mixing for renewable energy microgrids by particle swarm optimization. In: International artificial intelligence and data processing symposium (IDAP). IEEE, pp 1–5

    Google Scholar 

  187. Azaza M, Wallin F (2017) Multi objective particle swarm optimization of hybrid micro-grid system: a case study in sweden. Energy 123:108–118

    Article  Google Scholar 

  188. Basetti V, Chandel AK (2017) Optimal PMU placement for power system observability using taguchi binary bat algorithm. Measurement 95:8–20

    Article  Google Scholar 

  189. Li X, Fang L, Lu Z, Zhang J, Zhao H (2017) A line flow granular computing approach for economic dispatch with line constraints. IEEE Trans Power Syst 32(6):4832–4842

    Article  Google Scholar 

  190. Talpur N, Rashid Naseem AA, Ullah A (2019) Enhanced bat algorithm for solving non-convex economic dispatch problem. In: Recent advances on soft computing and data mining: proceedings of the fourth international conference on soft computing and data mining (SCDM 2020), Melaka, Malaysia, vol 978. Springer Nature, p 419

    Google Scholar 

  191. Liang H, Liu Y, Shen Y, Li F, Man Y (2018) A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans Power Syst 33(5):5052–5061

    Article  Google Scholar 

  192. Banumalar K, Manikandan B, Mahalingam SS (2017) Economic dispatch problem using clustered firefly algorithm for wind thermal power system. In: International conference on computational intelligence, cyber security, and computational models. Springer, pp 37–46

    Google Scholar 

  193. Moustafa FS, El-Rafei A, Badra N, Abdelaziz AY (2017) Application and performance comparison of variants of the firefly algorithm to the economic load dispatch problem. In: 2017 Third international conference on advances in electrical, electronics, information, communication and bio-informatics (AEEICB). IEEE, pp 147–151

    Google Scholar 

  194. Mostefa H, Mahdad B, Srairi K, Mancer N (2018) Dynamic economic dispatch solution with firefly algorithm considering ramp rate limit’s and line transmission losses. In: International conference in artificial intelligence in renewable energetic systems. Springer, pp 497–505

    Google Scholar 

  195. Nguyen TT, Vo DN, Dinh BH (2016) Cuckoo search algorithm for combined heat and power economic dispatch. Int J Electr Power Energy Syst 81:204–214

    Article  Google Scholar 

  196. Zhao J, Liu S, Zhou M, Guo X, Qi L (2018) Modified cuckoo search algorithm to solve economic power dispatch optimization problems. IEEE/CAA J Autom Sinica 5(4):794–806

    Article  MathSciNet  Google Scholar 

  197. Mohd Zamani MK, Musirin I, Suliman SI, Othman MM, Mohd Kamal MF (2017) Multi-area economic dispatch performance using swarm intelligence technique considering voltage stability. Int J Adv Sci Eng Inf Technol 7(1):1–7

    Article  Google Scholar 

  198. Gupta GK, Goyal S (2017) Particle swarm intelligence based dynamic economic dispatch with daily load patterns including valve point effect. In: 2017 3rd international conference on condition assessment techniques in electrical systems (CATCON). IEEE, pp 83–87

    Google Scholar 

  199. Jayabarathi T, Raghunathan T, Adarsh B, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641

    Article  Google Scholar 

  200. Zhang S, Gajpal Y, Appadoo S, Abdulkader M (2018) Electric vehicle routing problem with recharging stations for minimizing energy consumption. Int J Prod Econ 203:404–413

    Article  Google Scholar 

  201. Smiai O, Bellotti F, Berta R, De Gloria A (2017) Exploring particle swarm optimization to build a dynamic charging electric vehicle routing algorithm. In: international conference on applications in electronics pervading industry, environment and society. Springer, pp 127–134

    Google Scholar 

  202. Verma OP, Aggarwal D, Patodi T (2016) Opposition and dimensional based modified firefly algorithm. Expert Syst Appl 44:168–176

    Article  Google Scholar 

  203. Li Y, Lim MK, Tseng ML (2019) A green vehicle routing model based on modified particle swarm optimization for cold chain logistics. Ind Manage Data Syst

    Google Scholar 

  204. Salehi Sarbijan M, Behnamian J (2020) Multi-product production routing problem by consideration of outsourcing and carbon emissions: particle swarm optimization. Eng Optim 1–17

    Google Scholar 

  205. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Google Scholar 

  206. Rashid MFFA (2020) Tiki-taka algorithm: a novel metaheuristic inspired by football playing style. Engineering Computations

    Google Scholar 

  207. Sörensen K (2015) Metaheuristics the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Google Scholar 

  208. Molina D, LaTorre A, Herrera F (2018) Shade with iterative local search for large-scale global optimization. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

    Google Scholar 

  209. LaTorre A, Muelas S, Peña JM (2012) Multiple offspring sampling in large scale global optimization. In: IEEE congress on evolutionary computation. IEEE, pp 1–8

    Google Scholar 

  210. Kramer O (2008) Self-adaptive heuristics for evolutionary computation, vol 147. Springer

    Google Scholar 

  211. Ma X, Li X, Zhang Q, Tang K, Liang Z, Xie W, Zhu Z (2018) A survey on cooperative co-evolutionary algorithms. IEEE Trans Evolut Comput, in press

    Google Scholar 

  212. Gupta A, Ong YS, Feng L (2017) Insights on transfer optimization: because experience is the best teacher. IEEE Trans Emerging Topn Comput Intell 2(1):51–64

    Google Scholar 

  213. Konečnỳ J, McMahan HB, Ramage D, Richtárik P (2016) Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527

Download references

Acknowledgements

Eneko Osaba would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK (Elkarbot project) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneko Osaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osaba, E., Yang, XS. (2021). Applied Optimization and Swarm Intelligence: A Systematic Review and Prospect Opportunities. In: Osaba, E., Yang, XS. (eds) Applied Optimization and Swarm Intelligence. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-16-0662-5_1

Download citation

Publish with us

Policies and ethics