Skip to main content

Review on Thermal Performance Enhancement Techniques of Latent Heat Thermal Energy Storage (LHTES) System for Solar and Waste Heat Recovery Applications

  • Chapter
  • First Online:
New Research Directions in Solar Energy Technologies

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

At present, India imports around 86% of total petroleum products to cater its energy demand. However, in a single hour, the amount of power from the sun that strikes the Earth is more than the entire world consumes in a year. Despite of this, globe uses only 0.023% of the solar energy through photosynthesis that reaches the earth (https://www.world-builders.org/lessons/less/biomes/SunEnergy.html). Therefore, there is an urgent need to focus on research related to the energy storage and energy saving (through waste heat recovery) to curb the usage of natural resources. This paper presents the comprehensive review of latent heat thermal energy storage (LHTES) using phase change materials (PCMs) for solar and waste heat recovery (WHR) applications in the temperature range of 40–200 °C. The main reason to choose this temperature range is because general conventional heating and cooling applications in the domestic, commercial, and public administration sectors lie in this temperature range. The review focuses on study of different PCMs suitable for solar air and water heating, solar stills, solar absorption cooling, waste heat recovery, and solar thermal electricity generation. Energy storage for longer duration and curtailing thermal losses is quite challenging. Therefore, there is a lucrative scope of research on efficient thermal energy storage. Keeping this in cognizance, this study also lays emphasis on thermal conductivity enhancement techniques of PCMs, selection of suitable heat exchangers to store maximum thermal energy of PCM for longer duration, and effect of various heat exchange design parameters on thermal performance of PCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problems formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Rev 14:615–628

    Article  Google Scholar 

  • Agyenim F, Eames P, Smyth M (2011) Experimental study on the melting and solidification behavior of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system. Renew Energy 36(1):108–117

    Article  Google Scholar 

  • Akgun M, Aydin O, Kaygusuz K (2008) Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng 28:405–413

    Article  Google Scholar 

  • Al-Abidi AA, Mat S, Sopian K, Sulaiman M, Mohammad AT (2013) Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf 61:684–695

    Article  Google Scholar 

  • Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT (2014) Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 68:33–41

    Article  Google Scholar 

  • An article on “Test of two phase change materials for thermal energy storage: determination of the global heat transfer coefficient”

    Google Scholar 

  • Çakmak G, Yildiz C (2011) The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod Process 89(2):103–108

    Article  Google Scholar 

  • Castell A, Sole C, Medrano M, Roca J, Cabeza LF, Garcia D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28(13):1676–1686

    Article  Google Scholar 

  • Cheng WL, Li WW, Nian YL, Xia W (2018) Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials. Int J Heat Mass Transf 116:507–511

    Article  Google Scholar 

  • Chiu JNW, Martin V (2013) Multistage latent heat cold thermal energy storage design analysis. Appl Energy 112:1438–1445

    Article  Google Scholar 

  • Choi JC, Kim SD (1992) Heat-transfer characteristics of a latent heat storage system using MgCl2·6H2O. Energy 17(12):1153–1164

    Article  Google Scholar 

  • Cui Y, Lui C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95(4):1208–1212

    Article  Google Scholar 

  • Cunha JPD, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials—a review. Appl Energy 177:227–238

    Article  Google Scholar 

  • Du K, Calautit J, Wang Z, Wu Y, Liu H (2018) A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy 220:242–273

    Article  Google Scholar 

  • Elmeriah A, Nehari D, Aichouni M (2018) Thermo-convective study of a shell and tube thermal energy storage unit. Periodica Polytech Mech Eng 62(2):101–109

    Google Scholar 

  • Esakkimuthu S, Hassabou A, Palaniappan C, Spinnler M, Blumenberg J, Velraj R (2013) Experimental investigation on phase change material based thermal storage system for solar air heating applications. Sol Energy 88:144–153

    Article  Google Scholar 

  • Esapour M, Hosseini MJ, Ranjbar AA, Pahamli Y, Bahrampoury R (2016) Phase change in multi-tube heat exchangers. Renew Energy 85:1017–1025

    Article  Google Scholar 

  • Faegh M, Shafii MB (2017) Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination 409:128–135

    Article  Google Scholar 

  • Fan Z, Infante Ferreira CA, Mosaffa AH (2014) Numerical modelling of high temperature latent heat thermal storage for solar application combining with double-effect H2O/LiBr absorption refrigeration system. Sol Energy 110:398–409

    Article  Google Scholar 

  • Gil A, Oró E, Miró L, Peiró G, Ruiz Á, Salmerón JM (2014) Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int J Refrig 39:95–103

    Article  Google Scholar 

  • Harish S, Orejon D, Takata Y, Kohno M (2015) Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl Therm Eng 80:205–211

    Article  Google Scholar 

  • Hejčík J, Charvát P, Klimeš L, Astrouski I (2016) A PCM-water heat exchanger with polymeric hollow fibres for latent heat thermal energy storage: a parametric study of discharging stage. J Theor Appl Mech 54(4):1285–1295

    Article  Google Scholar 

  • Hosseini MJ, Rahimi M, Bahrampoury R (2014) Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass Transf 50:128–136

    Article  Google Scholar 

  • Hosseini MJ, Ranjbar AA, Rahimi M, Bahrampouri R (2015) Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energy Build 99:263–272

    Article  Google Scholar 

  • https://www.pluss.co.in/upload/application/plus10d82e_Pluss%20PCM%20in%20Solar%20Application.pdf. Last access 16/12/2019

  • https://www.pluss.co.in/upload/application/plus10d82e_Pluss%20PCM%20in%20Solar%20Application.pdf. Last accessed on 26.12.2019

  • https://www.thermaxxjackets.com/plate-and-frame-heat-exchangers-explained/. Last accessed 2019/01/21

  • https://www.world-builders.org/lessons/less/biomes/SunEnergy.html

  • Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells 170:68–76

    Article  Google Scholar 

  • Hussain A, Tso CY, Chao CY (2016) Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy 115:209–218

    Article  Google Scholar 

  • Jesumathy SP, Udayakumar M, Suresh S (2012) Heat transfer characteristics in latent heat storage system using paraffin wax. J Mech Sci Technol 26(3):959–965

    Article  Google Scholar 

  • Jian L (2008) Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy 82(11):977–985

    Article  Google Scholar 

  • Jose et al (2016) Thermal energy storage for low and medium temperature applications using phase change materials—a review. Appl Energy 177:227–238

    Article  Google Scholar 

  • Kabeel AE, Abdelgaied M (2017) Observational study of modified solar still coupled with oil ser-pentine loop from cylindrical parabolic concentrator and phase changing material under basin. Sol Energy 144:71–78

    Article  Google Scholar 

  • Kabeel AE, Khalil A, Shalaby SM, Zayed ME (2016) Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers Manag 113:264–272 (2016)

    Google Scholar 

  • Khorshidi J, Heidari S (2016) Design and construction of a spiral heat exchanger. Adv Chem Eng Sci 6:201–208

    Google Scholar 

  • Krasny I, Astrouski I, Raudensky M (2016) Polymeric hollow fiber heat exchanger as an automotive radiator. Appl Therm Eng 108:798–803

    Article  Google Scholar 

  • Kumar M, Gupta V, Bagri S (2017) CFD analysis of spirally coiled heat exchanger. Int J Sci Res Sci Eng Technol 3(5):157–160

    Google Scholar 

  • Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36(8):2083–2092

    Article  Google Scholar 

  • Li M (2013) A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 106:25–30

    Article  Google Scholar 

  • Mahfuz MH, Anisur MR, Kibria MA, Saidur R, Metselaar IHSC (2014) Performance investigation of thermal energy storage system with PCM for solar water heating application. Int Commun Heat Mass Transf 57:132–139

    Google Scholar 

  • Mat S, Al-Abidi AA, Sopian K, Sulaiman MY, Mohammad AT (2013) Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy Convers Manage 74:223–236

    Article  Google Scholar 

  • Mehrali M, Latibari ST, Mahila TMI, Matselaar HSC, Naghavi HS, Sadeghinezhad E, Akhiani AR (2013) Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61(2):633–640

    Article  Google Scholar 

  • Mehrali M, Tahan LS, Mehrali M, Mahlia TMI, Sadeghinezhad E, Metselaar HSC (2014) Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Appl Energy 135:339–349

    Article  Google Scholar 

  • Mosaffa AH, Talati F, Basirat Tabrizi H, Rosen MA (2012) Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build 49:356–361

    Article  Google Scholar 

  • Murray RE, Groulx D (2014a) Experimental study of the phase change and energy char-acteristics inside a cylindrical latent heat energy storage system: part 1 consecutive charging and discharging. Renew Energy 62:571–581

    Article  Google Scholar 

  • Murray RE, Groulx D (2014b) Experimental study of the phase change and energy char-acteristics inside a cylindrical latent heat energy storage system: part 2 simultaneous charging and discharging. Renew Energy 63:724–734

    Article  Google Scholar 

  • Niyas H, Muthukumar P (2013) Performance analysis of latent heat storage systems. Int J Sci Eng Res 4(12):74–79

    Google Scholar 

  • Nomura T, Okinaka N, Akiyama T (2010) Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant. Resour Conserv Recycl 54:1000–1006

    Article  Google Scholar 

  • Pandiyarajan V, Chinna Pandian M, Malan E, Velraj R, Seeniraj RV (2011) Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energy 88:77–87

    Article  Google Scholar 

  • Paria S, Sarhan AAD, Goodarzi MS, Baradaran S, Rahmanian B, Yarmand H, Alavi MA, Kazi SN, Metselaar HSC (2015) Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger. Sci World J 2015

    Google Scholar 

  • Peiro G, Gasia J, Miro L, Cabeza LF (2015) Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renew Energy 83:729–736

    Google Scholar 

  • Pirasaci T, Goswami DY (2016) Influence of design on performance of a latent heat storage system for a direct steam generation power plant. Appl Energy 162:644–652

    Article  Google Scholar 

  • Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf 127:838–856

    Article  Google Scholar 

  • Rahimi M, Hosseini MJ, Gorzin M (2019) Effect of helical diameter on the performance of shell and helical tube heat exchanger: an experimental approach. Sustain Cities Soc 44:691–701

    Article  Google Scholar 

  • Seeniraj RV, Narasimhan NL (2008) Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 82:535–542

    Article  Google Scholar 

  • Seeniraj RV, Velraj R, Narasimhan NL (2002) Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf 38(4–5):409–417

    Article  Google Scholar 

  • Shalaby SM, Bek MA, EI-Sebaii AA (2014) Solar dryers with PCM as energy storage medium: a review. Renew Sustain Energy Rev 33:110–116

    Google Scholar 

  • Singh RP, Kaushik SC, Rakshit D (2018a) Solidification behaviour of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates. Energy Convers Manage 171:825–838

    Article  Google Scholar 

  • Singh RP, Kaushik SC, Rakshit D (2018b) Melting phenomenon in a finned thermal storage system with grapheme nano-plates for medium temperature applications. Energy Convers Manage 163:86–99

    Article  Google Scholar 

  • Singh RP, Xu H, Kaushik SC, Rakshit D, Ramagnoli A (2019) Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material. Appl Therm Eng 151:176–190

    Article  Google Scholar 

  • Srinivasan S, Diallo MS, Saha SK, Abass OA, Sharma A, Balasubramanian G (2017) Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane. Int J Heat Mass Transf 114:318–323

    Article  Google Scholar 

  • Subramanian SP, Pandiyarajan V, Velraj R (2004) Experimental analysis of a PCM based I.C. engine exhaust waste heat recovery system. Int Energy J 5(2):81–92

    Google Scholar 

  • Tamme R, Bauer T, Buschle J, Laing D, Müller-Steinhagen H, Steinmann W-D (2008) Latent heat storage above 120 °C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32(3):264–271

    Article  Google Scholar 

  • Tao Z, Wang H, Liu J, Zhao W, Liu Z, Guo Q (2017) Dual-level packaged phase change materials–thermal conductivity and mechanical properties. Sol Energy Mater Sol Cells 169:222–225

    Article  Google Scholar 

  • Tay N, Bruno F, Belusko M (2012) Experimental validation of a CFD and an ε–NTU model for a large tube-in-tank PCM system. Int J Heat Mass Transf 55:5931–5940

    Article  Google Scholar 

  • Tian Y, Zhao CY (2013) Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES). Int J Heat Mass Transf 58:86–96

    Article  Google Scholar 

  • Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K (1997) Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy 60(5):281–290

    Article  Google Scholar 

  • Wang C, Lin T, Li N, Zheng H (2016) Heat transfer enhancement of phase change composite material: copper foam/paraffin. Renew Energy 96:960–965

    Article  Google Scholar 

  • Wei L, Xinguo L, Jun Z (2010) Experimental study of a finned-tube phase change heat storage system. In: Asia-Pacific power energy engineering conference (APPEEC) 2010

    Google Scholar 

  • Wu W, Zhang G, Ke X, Yang X, Wang Z, Liu C (2015) Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management. Energy Conserv Manag 101:278–284

    Article  Google Scholar 

  • Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366

    Article  Google Scholar 

  • Yang J, Tang L, Bao R, Bai L, Liu Z, Xie B, Yang M, Yang W (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174:56–64

    Article  Google Scholar 

  • Yazıcı MY, Avci M, Aydin O, Akgun M (2014) Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: an experimental study. Sol Energy 101:291–298

    Article  Google Scholar 

  • Zarkadas D, Sirkar KK (2004) Polymeric hollow fiber heat exchangers: an alternative for lower temperature applications. Ind Eng Chem Res 43(25):8093–8106

    Article  Google Scholar 

  • Zhang Y, Faghri A (1996) Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 39(15):3165–3173

    Article  Google Scholar 

  • Zhao D, Tan G (2015) Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application. Appl Energy 138:381–392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Rakshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A., Rakshit, D. (2021). Review on Thermal Performance Enhancement Techniques of Latent Heat Thermal Energy Storage (LHTES) System for Solar and Waste Heat Recovery Applications. In: Tyagi, H., Chakraborty, P.R., Powar, S., Agarwal, A.K. (eds) New Research Directions in Solar Energy Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-0594-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0594-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0593-2

  • Online ISBN: 978-981-16-0594-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics