Skip to main content

Microbial Degradation of Steroids

  • Chapter
  • First Online:
Recent Advances in Microbial Degradation

Abstract

Steroids are naturally found in humans, plants, fungi, and arthropods to implement several developmental functions. Steroids are also extensively used in the healthcare systems to design a myriad of therapeutics for the management of bronchial asthma, anaphylaxis, rheumatic fever, meningitis, etc. The widespread applications of steroids and their environmental discharges in soil/aquatic systems have posed serious health concerns such as infertility, premature birth, polycystic ovary syndrome, and reduces hatching rate in fish and birds. Being hydrophobic, these stable chemicals and their conjugate forms do not mix well with the water system and reside in the biosphere for prolonged periods. The situation poses an ecological risk and aquatic hazards for all terrestrial and aquatic fauna until these are decomposed completely. Specific microbial genome, biochemical reactions, the key intermediates, and distinct catabolic enzymes participate in the steroidal degradation. The chapter highlights significant aerobic and anaerobic microbes that efficiently catabolize complex steroids into nonsteroidal organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel M, Song X, Wang Y et al (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119

    Article  CAS  PubMed  Google Scholar 

  • Andaluri G, Suri RP, Kumar K (2012) Occurrence of estrogen hormones in biosolids, animal manure and mushroom compost. Environ Monit Assess 184:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Bazaes A, Schmachtenberg O (2012) Odorant tuning of olfactory crypt cells from juvenile and adult rainbow trout. J Exp Biol 215:1740–1748

    Article  CAS  PubMed  Google Scholar 

  • Burton J, Wells M (2002) The effect of phytoestrogens on the female genital tract. J Clin Pathol 55:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Munoz E, Hernandez OT, Camacho-Arroyo I (2012) Role of estradiol and progesterone in HIVsusceptibility and disease progression. Mini Rev Med Chem 12(11):1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Capyk JK, Kalscheuer R, Stewart GR et al (2009) Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem 284:35534–35542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaing YR, Fang JY, Ismail W et al (2010) Initial steps in anoxic testosterone degradation by Steroidobacter denitrificans. Microbiol 156:2253–2259

    Article  CAS  Google Scholar 

  • Chang H, Wan Y, Hu J (2009) Determination and source apportionment of five classes of steroid hormones in urban rivers. Environ Sci Technol 43:7691–7698

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Wang CH, Yang FC et al (2016) Identification of Comamonas testosteroni as an androgen degrader in sewage. Sci Rep 6:35386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YR, Ismail W, Gallien S, Heintz D et al (2008) Cholest-4-en-3-one-Δ1-dehydrogenase, a flavoprotein catalyzing the second step in anoxic cholesterol metabolism. Appl Environ Microbiol 74:107–113

    Article  CAS  PubMed  Google Scholar 

  • Committee for Veterinary Medicinal Product Progesterone (2004) EMEA/MRL/146/96-FINAL, London

    Google Scholar 

  • Crowe AM, Casabon I, Brown KL (2017) Catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria. mBio 8(2):e00321–e00317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J-Y, Shiu J-H et al (2016) Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33 with its coral host. Front Microbiol 7:251

    PubMed  PubMed Central  Google Scholar 

  • Doyle WI, Meeks JP (2018) Excreted steroids in vertebrate social communication. J Neurosci 38:3377–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresen C, Lin LY, D'Angelo I et al (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285(29):22264–22275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards PE, Davis R, Vance DE et al (1996) Isoprenoids, sterols and bile acids. In: Biochemistry of lipids, lipoproteins and membranes, 3rd edn. Elsevier, Amsterdam, pp 203–256

    Google Scholar 

  • Fahrbach M, Kuever J, Remesch M et al (2008) Steroidobacter denitrificans gen. Nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58(Pt 9):2215–2223

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Casey FX, Hakk H et al (2007) Persistence and fate of 17β-oestradiol and testosterone in agricultural soils. Chemosphere 67:886–895

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Cruz A, Angelova B et al (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  • Fernandez MF, Olmos B, Granada A et al (2007) Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ Health Perspect 115(1):8–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Cabezon L, Galan B, Garcia JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958. https://doi.org/10.3389/fmicb.2018.00958

    Article  PubMed  PubMed Central  Google Scholar 

  • Freier TA, Beitz DC, Li L et al (1994) Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. Int J Syst Bacteriol 44:137–142

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Kikuchi S, Satomi M et al (2001) Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microbiol 68:2057–2060

    Article  CAS  Google Scholar 

  • Garcia-Gomez E, Gonalez-Pedrajo B, Camacho-Arroyo I (2013) Role of sex steroid hormones in bacterial-host interactions. Biomed Res Int 2013:928290

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol 14:1008–1010

    Article  CAS  Google Scholar 

  • Hamid H, Eskicioglu C (2012) Fate of estrogenic hormones in wastewater and sludge treatment: a review of properties and analytical detection techniques in sludge matrix. Water Res 46(18):5813–5833

    Article  CAS  PubMed  Google Scholar 

  • Hanselman TA, Graetz DA, Wilkie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37:5471–5478

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Probian C (1997) Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol 167(5):269–274

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss AK, Rider CV, Blystone CR et al (2008) Environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105(2):235–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houck LD (2009) Pheromone communication in amphibians and reptiles. Annu Rev Physiol 71:161–176

    Article  CAS  PubMed  Google Scholar 

  • Ibero J, Sanz D, Galen B et al (2019) High quality whole genome sequence of an estradiol degrading strain, Novosphingobium tardaugens NBRC 16725. Microbiol Resour Announc 8(11):e01715–e01718. https://doi.org/10.1128/MRA.01715-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Isenmann E, Ambrosio G, Joseph JF et al (2019) Ecdysteroids as non-conventional anabolic agent: performance enhancement by ecdysterone supplementation in human. Arch Toxicol 93(7):1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Johnson AC, Belfroid A, Di-Corcia AC (2000) Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 256:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kelly SL, Kelly DE (2013) Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond Ser B Biol Sci 368:20120476

    Article  CAS  Google Scholar 

  • Kolodziej EP, Sedlak DL (2007) Rangeland grazing as a source of steroid hormones to surface waters. Environ Sci Technol 41:3514–3520

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Kanjo Y, Mizutani S (2009) Removal of mechanisms for endocrine disrupting compounds (EDGs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  CAS  PubMed  Google Scholar 

  • Liu SS, Ying GG, Liu YS et al (2015) Occurrence and removal of progestens in two representative swine farms: effectiveness of logoon and digester treatment. Water Res 77:146–154

    Article  CAS  PubMed  Google Scholar 

  • Maier R, Pepper I, Gerba C (2000) Terrestrial environment. In: Environmental Microbiology. Academic Press, San Diego, CA, pp 61–80

    Google Scholar 

  • Mehmood Z, Kelly DE, Kelly SL (1995) Metabolism of the herbicide chlortoluron by human cytochrome P450 3A4. Chemosphere 31:4515–4529

    Article  CAS  PubMed  Google Scholar 

  • Ojoghoro JO, Chaudhary AJ, Campo P et al (2017) Scrimshaw progesterone potentially degrades to potent androgens in surface waters. Sci Total Environ 579:1876–1884

    Article  CAS  PubMed  Google Scholar 

  • Orrego R, Guchardi J, Hernandez V et al (2009) Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout. Environ Toxicol Chem 28:181–188

    Article  CAS  PubMed  Google Scholar 

  • Payne DW, Talalay P (1985) Isolation of novel microbial 3 alpha-, 3 beta-, and 17 beta-hydroxysteroid dehydrogenases. Purification, characterization, and analytical applications of a 17 beta-hydroxysteroid dehydrogenase from an Alcaligenes sp. J Biol Chem 260:13648–13655

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Ying G, Yang B et al (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and product identification. Chemosphere 95:581–588

    Article  CAS  PubMed  Google Scholar 

  • Peterson DH, Murray HC, Eppstein SH et al (1952) Microbiological transformations of steroids. I. Introduction of oxygen at carbon-11 of progesterone. J Am Chem Soc 74(23):5933–5936

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Horden B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  PubMed  Google Scholar 

  • Petrusma M, Van der Geize R, Dijkhuizen L (2014) 3-Ketosteroid 9a-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Anton Leeuw Int J G 106:157–172

    Article  CAS  Google Scholar 

  • Pruneda-Paz JL, Linares M, Cabrera JE et al (2004) TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 186:1430–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh H, Chu KH (2010) A 17𝛽-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I—characterization and abundance in wastewater treatment plants. Environ Sci Technol 44(13):4943–4950

    Article  CAS  PubMed  Google Scholar 

  • Rohman A, Dijkstra BW (2019) The role and mechanism of microbial 3-ketosteroid Δ1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 191:105366

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Xiong G, Maser E (2011) Steroid degradation and two steroid-inducible enzymes in the marine bacterium H5. Chem Biol Interact 191(1–3):89–94

    Article  CAS  PubMed  Google Scholar 

  • Stavreva DA, George AA, Klausmeyer P (2012) Prevalent glucocorticoid and androgen activity in US water sources. Sci Rep 2:937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinman MQ, Trainor BC (2010) Rapid effects of steroid hormones on animal behavior. Nat Educ Knowl 1(10):1

    Google Scholar 

  • Talalay P, Dobson MM, Tapley DF (1952) Oxidative degradation of testosterone by adaptive enzymes. Nature 170:620–621

    Article  CAS  PubMed  Google Scholar 

  • Taylor CD, Smith SO, Gagosian RB (1981) Use of microbial enrichments for the study of the anaerobic degradation of cholesterol. Giochim Cosmochim Acta 45:2161–2168

    Article  CAS  Google Scholar 

  • University of Iowa (2013) Steroids may persist longer in the environment than expected. Science Daily, 26 September 2013

    Google Scholar 

  • Wierman ME (2007) Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ 31(1):26–33

    Article  PubMed  Google Scholar 

  • Wu Y, Huang P, Xiong G et al (2015) Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chem Biol Interact 234:197–204

    Article  CAS  PubMed  Google Scholar 

  • Ying GG, Kookana RS, Ru YJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28:545–551

    Article  CAS  Google Scholar 

  • Yoshimoto T, Nagai F, Fujimoto J et al (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70(9):5283–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CP, Roh H, Chu KH (2007) 17-beta-estradiol degrading bacteria isolated from activated sludge. Environ Sci Technol 41(2):486–492

    Article  CAS  PubMed  Google Scholar 

  • Yu CP, Deeb RA, Chu KH (2013) Microbial degradation of steroidal estrogens. Chemosphere 91:1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Xiong G, Maser E (2011) Characterization of the steroid degrading bacterium S19-1 from the Baltic Sea at Kiel, Germany. Chem Biol Interact 191(1–3):83–88

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Yang Z, Yang Q et al (2015) Degradation of dexamethasone by acclimated strain of Pseudomonas alcaligenes. J Clin Exp Med 8(7):10971–10978

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, S.K., Pathak, K., Pathak, D. (2021). Microbial Degradation of Steroids. In: Inamuddin, .., Ahamed, M.I., Prasad, R. (eds) Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0518-5_10

Download citation

Publish with us

Policies and ethics