Skip to main content

Morphology, Structure, Properties and Applications of XLPE

Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Crosslinkable polyethylene compounds (XLPE) produced from different commercial polyethylene polymers are well known in the relevant literature. Both crosslinked high- and low-density polyethylene (HDPE, LDPE) have been investigated in this chapter. It is known that crosslinking induces modifications which focus on the polymer matrix leading to new morphology as well as a new structure allowing ‘thermoset’ polymer formation with a long-term stability. The crosslinking density is an important factor for the determination of physical properties of various polymer materials. Crosslinked polyethylene can be obtained technically by several chemical and physical processes that affect the morphologies and the structure of the investigating polymer. The resulting network material after the crosslinking process provides the polymer with many important physical and chemical properties. These characterized properties are different from those observed before crosslinking enhancing newly generated physicochemical properties which will be suitable for specific applications according to crosslinking treatment processes. The combination of physical properties, long-term stability, UV resistance and the wide range of structures and morphologies has brought these crosslinked polyethylene products into distinction properties in comparison with other polymers materials. The impact strength; abrasion resistance and environmental stress-cracking resistance are known to increase with the crosslinking which alters XLPE as a suitable material for pipe, tubing and hip arthroplasty applications; while excellent dielectric properties make them useful for high-voltage cables production; besides shrinkage resistance and expansion ratio mark them convenient for foam polymer applications. This chapter provides comprehensive investigation requirement changes in the morphology, structure and properties of XLPE and its applications such as cable insulation, hip arthroplasty, foam, pipes are also discussed.

Keywords

  • XLPE
  • Crosslinked
  • Cable insulation
  • Foam
  • Pipe
  • Mechanical and thermal properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-16-0514-7_6
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-16-0514-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

References

  1. Vaughan A, Davis DS, Hagadorn JR (2012) Industrial catalysts for alkene polymerization. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 657–672

    Google Scholar 

  2. Whelton A, Dietrich A, Gallagher D (2010) Contaminant diffusion, solubility, and material property differences between HDPE and PEX potable water pipes. J Environ Eng 136(2):227–237

    CrossRef  CAS  Google Scholar 

  3. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92(6):3796–3803

    Google Scholar 

  4. Sirisinha K, Boonkongkaew M, Kositchaiyong S (2010) The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test 29(8):958–965

    Google Scholar 

  5. Wang X, Yoshimiura N (1998) In: International symposium on electrical insulating materials. Japan, 1998

    Google Scholar 

  6. Aljoumaa K, Ajji Z (2016) Mechanical and electrical properties of gamma-irradiated silane crosslinked polyethylene (Si-XLPE). J Radioanal Nucl Chem 307:1391–1399

    CrossRef  CAS  Google Scholar 

  7. Morshedian J, Hosseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18(2):103–128

    Google Scholar 

  8. Kuan H-C, Kuan J-F, Ma C-C, Huang J-M (2005) Thermal and mechanical properties of silane-grafted water crosslinked polyethylene. J Appl Polym Sci 96:2383–2391

    Google Scholar 

  9. Barzin J, Azizi H, Morshedian J (2006) Preparation of silane-grafted and moisture cross-linked low density polyethylene: Part I: factors affecting performance of grafting and cross-linking. Polym Plast Technol Eng 45:979–983

    Google Scholar 

  10. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92:3796–3803

    Google Scholar 

  11. Gl O, Mr C (2010) Optimization of process conditions, characterization and mechanical properties of silane crosslinked high-density polyethylene. Mater Sci Eng 527(18–19):4593–4599

    Google Scholar 

  12. Barzin J, Azizi H, Morshedian J (2007) Preparation of silane-grafted and moisture crosslinked low density polyethylene. Part II: electrical, thermal and mechanical Properties. Polym-Plast Technol Eng 46(3):305–310

    Google Scholar 

  13. Peschke E, Olshausen Rv (1999) Cable systems for high and extra-high voltage: development, manufacture, testing, installation and operation of cables and their accessories. Publicis MCD verlag

    Google Scholar 

  14. Hirabayashi H, Iguchi A, Yamada K, Nishimura H, Ikawa K, Honma H (2013) Study on the structure of peroxide cross-linked polyethylene pipes with several stabilizers. Mater Sci Appl 4(9):497–503

    Google Scholar 

  15. Vd R, Hm C, Ao P, McG R, As G (2004) Study of low concentrations of dicumyl peroxide on the molecular structure modification of LLDPE by reactive extrusion. Polym Test 23(8):949–955

    CrossRef  CAS  Google Scholar 

  16. Svoboda P, Poongavalappil S, Theravalappil R, Svobodova D, Mokrejs P (2013) Effect of octene content on peroxide crosslinking of ethylene-octene copolymers. Polym Int 62(2):184–189

    Google Scholar 

  17. Marcilla A, Ruiz-Femenia R, Hernández J, García-Quesada JC (2006) Thermal and catalytic pyrolysis of crosslinked polyethylene. J Anal Appl Pyrolysis 76(1–2):254–259

    Google Scholar 

  18. Lazar M, Rado R, Rychlý J (1990) Crosslinking of polyolefins. Polym Phys 149–197

    Google Scholar 

  19. Chmielewski AG, Haji-Saeid M, Ahmed S (2005) Progress in radiation processing of polymers. Nucl Instrum Methods B 236:44–54

    Google Scholar 

  20. Jiao C, Wang Z, Liang X, Hu Y (2005) Non-isothermal crystallization kinetics of silane crosslinked polyethylene. Polym Test 24(1):71–80

    Google Scholar 

  21. Phillips PJ, Kao YH (1986) Crystallinity in chemically crosslinked low density polyethylenes: 2. Crystallization kinetics. Polymer 27:1679–1686

    CrossRef  CAS  Google Scholar 

  22. Gohil RM, Phillips PJ (1986) Crystallinity in chemically crosslinked low density polyethylenes: 3. Morphology of the XLPE-2 system. Polymer 27:1687–1695

    CrossRef  CAS  Google Scholar 

  23. Gohil RM, Phillips PJ (1986) Crystallinity in chemically crosslinked low density polyethylenes: 4. Influence of crosslink density on morphology. Polymer 27:1696–1704

    CrossRef  CAS  Google Scholar 

  24. Paajanen A, Vaari J, Verho T (2019) Crystallization of cross-linked polyethylene by molecular dynamics Simulation. Polymer 171:80–86

    CrossRef  CAS  Google Scholar 

  25. Mason L, Doyle T, Reynolds A (1992) Effect of antioxidant concentration and radiation dose on oxidation induction time. In: Electrical insulation, conference record of the 1992 IEEE international symposium on, 7–10 Jun 1992, pp 169–172

    Google Scholar 

  26. Suh KS, Hwang SJ, Noh JS, Takada T (1994) Effects of constituents of XLPE on the formation of space charge. IEEE Trans Dielectr Electr Insul 1(6)

    Google Scholar 

  27. Englund V (2008) Voltage stabilisers for XLPE cable insulation. Thesis for the Degree of Doctorate of Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology

    Google Scholar 

  28. Melo RPd, Aguiar VdO, Marque MdFV (2015) Silane crosslinked polyethylene from different commercial PE’s: influence of comonomer, catalyst type and evaluation of HLPB as crosslinking coagent. Mater Res 18(2):313–319

    Google Scholar 

  29. Cowie J, Arrighi V (2008) Polymers: chemistry and physics of modern materials, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  30. Ahmed N, Srinivas N (2001) Cable insulation. In: Webster J (ed) Wiley encyclopedia of electrical and electronics engineering. Wiley

    Google Scholar 

  31. Shimizu N, Laurent C (1998) Electrical tree initiation. IEEE Trans Dielectr Electr Insul 5(5):651–659

    CrossRef  Google Scholar 

  32. Zhang H, Zhang J, Duan L, Xie S, Xue J (2017) Application status of XLPE insulated submarine cable used in offshore wind farm in China. In: The 6th international conference on renewable power generation (RPG), 19–20 Oct 2017

    Google Scholar 

  33. Worzyk T (2009) Submarine power cables. Springer, Berlin, Heidelberg

    CrossRef  Google Scholar 

  34. Nishikawa S, Sasaki K-i, Akita K, Sakamaki M, Kazama T, Suzuki K (2017) XLPE cable for DC link. SEI Tech Rev 84

    Google Scholar 

  35. Byggeth M, Johannesson K, Liljegren C, Palmqvist L, Axelsson U, Jonsson J, Törnkvist C (1999) The development of an HVDC cable system and its first application in the Gotland HVDC light project. In: JiCable, Paris, 1999

    Google Scholar 

  36. Gustafsson A, Jeroense M, Ghorbani H, Quist T, Saltzer M, Farkas A, Axelsson F, Mondiet V (2015) Qualification of an extruded HVDC cable system at 525 kV. In: JiCable 15, Paris, 2015

    Google Scholar 

  37. Ghorbani H, Jeroense M, Olsson CO, Saltzer M (2014) HVDC cable systems—highlighting extruded technology. IEEE Trans Power Delivery 29(1):414–421

    CrossRef  Google Scholar 

  38. Hampton N, Rick H, Hakan L, Harry O (2007) Long-life XLPE insulated power cable. In: Jicable, 2007

    Google Scholar 

  39. Boysen RL (1970) An analysis of the continuous vulcanizing process for polyethylenes. In: IEEE Summer Power Meeting and EHV Conference, pp 926–933

    Google Scholar 

  40. Huotari P, Sistola M (1997) Production of XLPE insulated high and extra high voltage cable cores on catenary CV lines. Wire Ind 64(762):366–368

    Google Scholar 

  41. Gulmine JV, Akcelrud L (2004) Correlations between the processing variables and morphology of crosslinked polyethylene. J Appl Polym Sci 94:222–230

    CrossRef  CAS  Google Scholar 

  42. Olasz L (2006) Residual stresses and strains in cross-linked polyethylene power cable insulation. Doctoral thesis no. 63, KTH Engineering Sciences, Stockholm, Sweden

    Google Scholar 

  43. IEC (2004) Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV)—test methods and requirements, 3rd edn. IEC

    Google Scholar 

  44. Fournier D, Robertson C (1996) Morphological study of aging phenomena in XLPE by TEM technique. J Polym Sci: Part B Polym Phys 34:1621–1628

    Google Scholar 

  45. Nilsson UH, Dammert RC, Campus A, Snec A, Jakosuo-Jansson H (1998) Morphology of polyethylene for power cable insulation: effects of antioxidant and crosslinking. In: IEEE international conference on conduction and breakdown in solid dielectrics. IEEE, pp 365–367

    Google Scholar 

  46. Woodward A (1989) Atlas of polymer morphology. Hanser Gardner Publications

    Google Scholar 

  47. Li L, Zhong L, Zhang K, Gao J, Xu M (2018) Temperature dependence of mechanical, electrical properties and crystal structure of polyethylene blends for cable insulation. Materials 11:1922

    CrossRef  CAS  PubMed Central  Google Scholar 

  48. Nilsson S, Hjertberg T, Smedberg A (2010) Structural effects on thermal properties and morphology in XLPE. Eur Polym J 46:1759–1769

    CrossRef  CAS  Google Scholar 

  49. Lacevic N, Fried L, Gee R (2008) Heterogeneous directional mobility in the early stages of polymer crystallization. J Chem Phys 128:014903

    CrossRef  CAS  PubMed  Google Scholar 

  50. Jabbari-Farouji S, Lame O, Perez M, Rottler J, Barrat J-L (2017) Role of the intercrystalline tie chains network in the mechanical response of semicrystalline polymers. Phys Rev Lett 118:217802

    CrossRef  PubMed  Google Scholar 

  51. Mo Sj, Zhang J, Liang D, Chen Hy (2013) Study on pyrolysis characteristics of cross-linked polyethylene material cable. Procedia Eng 52:588–592

    CrossRef  CAS  Google Scholar 

  52. Dissado L, Fothergill J, See A, Stevens G, Markey L, Laurent C, Teyssedre G, Nilsson U, Platbrood G, Montanari G (2000) Characterizing HV XLPE cables by electrical, chemical and microstructural measurements on cable peeling: effects of surface roughness, thermal treatment and peeling location. Electr Insul Dielectr Phenom 1:136–140

    Google Scholar 

  53. Olasz L, Gudmundson P (2004) Viscoelastic model of cross-linked polyethylene including effects of temperature and crystallinity. Technical report 363, Royal Institute of Technology, Department of Solid Mechanics, Stockholm

    Google Scholar 

  54. Prat JÒ (2011) Study on conduction mechanisms of medium voltage cable XLPE insulation in the melting range of temperatures. Universitat Politècnica de Catalunya

    Google Scholar 

  55. Olasz L, Gudmundson P (2005) Prediction of residual stresses in high voltage cable insulation. In: SEM

    Google Scholar 

  56. Shugai G, Yakubenko PA (2003) Heat transfer processes in the curing tube during the production of XLPE insulated cables. In: Proceedings of HT2003 ASME summer heat transfer conference, pp 227–228

    Google Scholar 

  57. Geng P, Song J, Tian M, Lei Z, Du Y (2018) Influence of thermal aging on AC leakage current in XLPE insulation. AIP Adv 8:025115

    CrossRef  CAS  Google Scholar 

  58. Zhou YX, Luo XG, Yan P, Liang XD, Guan ZC, Yoshimura N (2001) Influence of morphology on tree growth in polyethylene. In: International symposium on electrical insulating materials (ISEIM), Himeji, Japan, 2001, pp 194–197

    Google Scholar 

  59. Sarathi R, Nandini A, Danikas MG (2011) Understanding electrical treeing phenomena in XLPE cable insulation adopting uhf technique. J Electr Eng 62(2):73–79

    Google Scholar 

  60. Qureshi MI, Malik NH, Al-Arainy AA (2012) Investigation of electrical treeing in cable grade crosslinked polyethylene (XLPE) insulations. Int J Phys Sci 7(1):132–138

    CrossRef  CAS  Google Scholar 

  61. Thiamsri R, Ruangkajonmathee N, Oonsivilai A, Marungsri B (2011) Effect of applied voltage frequency on electrical treeing in 22 kV cross-linked polyethylene insulated cable. Int J Electr Comput Eng 5(12)

    Google Scholar 

  62. Andrianjohaninarivo J, Wertheimer M, Yelon A (1987) Nucleation of electrical stress in polyethylene. IEEE Trans Electr Insul EI-22(6):709–714

    Google Scholar 

  63. Krause G, Gottlich S, Moller K, Meurer D (1989) Space charge phenomena in partially crystalline polymers: on-line measurement of charge carrier motion under high AC-field stress. In: Proceedings of the 3rd international conference on conduction and breakdown in solid dielectrics, 3–6 Jul 1989, pp 560–564

    Google Scholar 

  64. Hozumi N, Okamoto T, Fukagawa H (1988) TEM observation of electrical tree paths and micro-structures in polyethylene. In: Conference record of the 1988 IEEE international symposium on electrical insulation, June 1988, pp 331–334

    Google Scholar 

  65. Jixiao L, Yewen H, Feihu Z, Changshun W, Zhongfu X (2003) The structure of XLPE and the distribution of space charge. Sci China Ser G: Phys Mech Astron 46(185)

    Google Scholar 

  66. Li Y, Zhang M, Liu H (2018) Research of grounded DC electrical tree growth properties in XLPE. J Int Council Electr Eng 8(1):93–98

    CrossRef  Google Scholar 

  67. Dissado L, Fothergill J (1992) Electrical degradation and breakdown in polymers. In: IEE materials and devices series 9. Peter Peregrinus, p 601

    Google Scholar 

  68. Doedens EH (2012) Organic contaminants in crosslinked polyethylene for demanding high voltage applications. Diploma Work in the Master programme of Electric Power Engineering, Chalmers University Of Technology, Gothenburg, Sweden

    Google Scholar 

  69. Zheng X, Chen G (2008) Propagation mechanism of electrical tree in XLPE cable insulation by investigating a double electrical tree structure. IEEE Trans Dielectr Electr Insul 15(3):800–807

    CrossRef  CAS  Google Scholar 

  70. Sarathi R, Venkataseshaiah C, Kumar CRA (2002) Investigations of growth of electrical trees in XLPE cable insulation under different voltage profiles. In: National power systems conference, NPSC, 2002

    Google Scholar 

  71. Bellet JJd, Matey G, Rose J, Rose L, Filippini JC, Poggi Y, Raharimalala V (1987) Some aspects of the relationship between water treeing, morphology and microstructure of polymers. IEEE Trans Electr Insul 22:211

    Google Scholar 

  72. Nilsson S (2010) The effect of crosslinking on morphology and electrical properties in LDPE intended for power cables. Thesis for the Degree of Doctorate of Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology

    Google Scholar 

  73. Ciuprina F, Teissèdre G, Filipini J (2001) Polyethylene crosslinking and water treeing. Polymer 42:7841–7846

    CrossRef  CAS  Google Scholar 

  74. De Bellet JJ, Matey G, Rose L, Rose V, Filippini JC, Poggi Y, Raharimalala V (1987) Some aspects of the relationship between water treeing, morphology, and microstructure of polymers. IEEE Trans Electr Insul EI-22(2):211–217

    Google Scholar 

  75. Meyer C (1983) Water absorption during water treeing in polyethylene. IEEE Trans Electr Insul EI-18(1):28–31

    Google Scholar 

  76. Ciuprina F, Teissedre G, Filippini JC, Smedberg A, Campus A, Hampton N (2010) Chemical crosslinking of polyethylene and its effect on water tree initiation and propagation. IEEE Trans Dielectr Electr Insul 17(3):709–715

    CrossRef  CAS  Google Scholar 

  77. Ciuprina F, Teissèdre G, Filippini JC, Notingher PV, Campus A, Zaharescu T (2004) Water treeing in chemically crosslinked polyethylene. J Optoelectron Adv Mater 6(3):1077–1080

    CAS  Google Scholar 

  78. Jarvid M, Johansson A, Bjuggren JM, Wutzel H, Englund V, Gubanski S, Müller C, Andersson MR (2014) Tailored side-chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross-linked polyethylene. J Polym Sci, Part B: Polym Phys 52:1047–1054

    CrossRef  CAS  Google Scholar 

  79. Boggs S, Xu J (2001) Water treeing-filled versus unfilled cable insulation. IEEE Electr Insul Mag 17(1):23

    CrossRef  Google Scholar 

  80. Dong W, Wang X, Tian B, Liu Y, Jiang Z, Li Z, Zhou W (2019) Use of grafted voltage stabilizer to enhance dielectric strength of cross-linked polyethylene. Polymers 11:176

    CrossRef  CAS  PubMed Central  Google Scholar 

  81. Wutzel H, Jarvid M, Bjuggren J, Johansson A, Englund V, Gubanski S, Andersson MR (2015) Thioxanthone derivatives as stabilizers against electrical breakdown in cross-linked polyethylene for high voltage applications. Polym Degrad Stab 112:63–69

    CrossRef  CAS  Google Scholar 

  82. Caronia P, Mendelsohn A, Gross L, Kjellqvist J (2006) Global trends and motivation toward the adoption of TR-XLPE cable. In: IEEE T&D conference, Dallas, 2006

    Google Scholar 

  83. Aherwar A, Singh A, Patnaik A (2015) Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioeng 3:23–43

    CrossRef  CAS  Google Scholar 

  84. Affatato S (ed) (2014) Perspectives in total hip arthroplasty: advances in biomaterials and their tribological interactions. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  85. Merola M, Affatato S (2019) Materials for hip prostheses: a review of wear and loading considerations. Materials 12:495

    CrossRef  CAS  PubMed Central  Google Scholar 

  86. Yamamoto K, Tateiwa T, Takahashi Y (2017) Vitamin E-stabilized highly crosslinked polyethylenes: the role and effectiveness in total hip arthroplasty. J Orthop Sci 22:384–390

    CrossRef  PubMed  Google Scholar 

  87. Muratoglu O, Bragdon C (2015) Highly cross-linked and melted UHMWPE. In: Kurtz SM (ed) UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. William Andrew, Norwich, NY, USA

    Google Scholar 

  88. Atwood SA, Citters DWV, Patten EW, Furmanski J, Ries MD, Pruitt LA (2011) Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J Mech Behav Biomed Mater 4(7):1033–1045

    CrossRef  CAS  PubMed  Google Scholar 

  89. Oral E, Ghali B, Muratoglu O (2011) The elimination of free radicals in irradiated UHMWPEs with and without vitamin E stabilization by annealing under pressure. J Biomed Mater Res Part B Appl Biomater 97B:167–174

    Google Scholar 

  90. Oral E, Rowell S, Muratoglu O (2006) The effect of tocopherol on the oxidation and free radical decay in irradiated UHMWPE. Biomaterials 27:5580–5587

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oral E, Wannomae K, Hawkins N, Harris W, Muratoglu O (2004) Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 25:5515–5522

    CrossRef  CAS  PubMed  Google Scholar 

  92. Heisel C, Silva M, dela Rosa MA, Schmalzried TP (2004) Short-term in vivo wear of cross-linked polyethylene. J Bone Joint Surg Am 86-A(4):748

    Google Scholar 

  93. Muratoglu O, Bragdon C, O’Connor D, Jasty M, Harris W, Gul R, McGarry F (1999) Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20:1463–1470

    CrossRef  CAS  PubMed  Google Scholar 

  94. Affatato S, Zavalloni M, Taddei P, Foggia MD, Fagnano C, Viceconti M (2008) Comparative study on the wear behaviour of different conventional and cross-linked polyethylenes for total hip replacement. Tribol Int 41:813–822

    Google Scholar 

  95. Bracco P, Bellare A, Bistolfi A, Affatato S (2017) Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties. Materials 10:791

    CrossRef  CAS  PubMed Central  Google Scholar 

  96. Oral E, Ghali B, Muratoglu O (2011) The elimination of free radicals in irradiated UHMWPEs with and without vitamin e stabilization by annealing under pressure. J Biomed Mater Res Part B Appl Biomater 97 B:167–174

    Google Scholar 

  97. Burnett S, Abos D (2010) Total hip arthroplasty: Techniques and results. BB Med. J. 52:455–464

    Google Scholar 

  98. Muratoglu O, Wannomae K, Rowell S, Micheli B, Malchau H (2010) Ex vivo stability loss of irradiated and melted ultra-high molecular weight polyethylene. JBJS 92:2809–2816

    CrossRef  Google Scholar 

  99. Puppulin L, Miura Y, Casagrande E, Hasegawa M, Marunaka Y, Tone S, Sudo A, Pezzotti G (2016) Validation of a protocol based on Raman and infrared spectroscopies to nondestructively estimate the oxidative degradation of UHMWPE used in total joint arthroplasty. Acta Biomater 38:168–178

    CrossRef  PubMed  Google Scholar 

  100. Reinitz S, Currier B, Levine R, Van Citters D (2014) Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings. Biomaterials 35:4436–4440

    CrossRef  CAS  PubMed  Google Scholar 

  101. Currier B, Currier J, Mayor M, Lyford K, Van Citters D, Collier J (2007) In vivo oxidation of γ-barrier-sterilized ultra-high-molecular-weight polyethylene bearings. J. Arthroplast 22:721–731

    CrossRef  Google Scholar 

  102. Takahashi Y, Masaoka T, Pezzotti G, Shishido T, Tateiwa T, Kubo K, Yamamoto K (2014) Highly cross-linked polyethylene in total hip and knee replacement: spatial distribution of molecular orientation and shape recovery behavior. BioMed Res Int. http://dx.doi.org/10.1155/2014/808369

  103. Bhateja S (1983) Radiation-induced crystallinity changes in linear polyethylene: influence of aging. J Appl Polym Sci 28:861–872

    CrossRef  CAS  Google Scholar 

  104. Muratoglu O, Bragdon C, O’Connor D, Skehan H, Delany J, Jasty M, Harris W (2000) The effect of temperature on radiation crosslinking of UHMWPE for use in total hip arthroplasty. In: 46th Annual Meeting, Orthopaedic Research Society, Orlando, USA

    Google Scholar 

  105. Oral E, Beckos C, Muratoglu O (2008) Free radical elimination in irradiated UHMWPE through crystal mobility in phase transition to the hexagonal phase. Polymer 49:4733–4739

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sinha R (2002) Hip replacement: current trends and controversies. Marcel Dekker, New York City, NY, USA

    Google Scholar 

  107. Sobieraj M, Rimnac C (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2:433–443

    CrossRef  CAS  PubMed  Google Scholar 

  108. McKellop H, Shen FW, Lu B, Campbell P, Salovey R (1999) Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res 17(2):157–167

    CrossRef  CAS  PubMed  Google Scholar 

  109. Gencur SJ, Rimnac CM, Kurtz SM (2006) Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra high molecular weight polyethylene. Biomaterials 27(8):1550–1557

    CrossRef  CAS  PubMed  Google Scholar 

  110. Bradford L, Baker D, Ries M, Pruitt LA (2004) Fatigue crack propagation resistance of highly crosslinked polyethylene. Clin Orthop Relat Res 429:68–72

    CrossRef  Google Scholar 

  111. Cybo J, Maszybrocka J, Barylski A, Kansy J (2012) Resistance of UHMWPE to plastic deformation and wear and the possibility of its enhancement through modification by radiation. J Appl Polym Sci 25(6):4188–4196

    CrossRef  CAS  Google Scholar 

  112. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26:905–915

    CrossRef  CAS  PubMed  Google Scholar 

  113. Hodrick JT, Severson EP, McAlister DS, Dahl B, Hofmann AA (2008) Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop Relat Res 466:2806–2812

    CrossRef  PubMed  PubMed Central  Google Scholar 

  114. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J Arthroplasty 16(2):149

    Google Scholar 

  115. Muratoglu OK, O’Connor DO, Bragdon CR, Delaney J, Jasty M, Harris WH, Merrill E, Venugopalan P (2002) Gradient crosslinking of UHMWPE using irradiation in molten state for total joint arthroplasty. Biomaterials 23(3):717

    Google Scholar 

  116. Kurtz SM, Medel FJ, MacDonald D, Parvizi J, Kraay MJ, Rimnac CM (2010) Reasons for revision of first-generation highly cross-linked polyethylenes. J Arthroplasty 25(6):67–74

    CrossRef  PubMed  PubMed Central  Google Scholar 

  117. Muratoglu OK, Wannomae K, Christensen S, Rubash HE, Harris WH (2005) Ex vivo wear of conventional and crosslinked polyethylene acetabular liners. Clin Orthop Relat Res 438:158–164

    CrossRef  PubMed  Google Scholar 

  118. Garcıa-Rey E, Garcıa-Cimbrelo E, Cruz-Pardos A, Ortega-Chamarr J (2008) New polyethylenes in total hip replacement: prospective, comparative clinical study of two types of liner. J Bone Joint Surg B 90(2):149–153

    CrossRef  Google Scholar 

  119. Takada R, Jinno T, Koga D, Miyatake K, Muneta T, Okawa A (2017) Comparison of wear rate and osteolysis between second-generation annealed and first-generation remelted highly cross-linked polyethylene in total hip arthroplasty. A case control study at a minimum of five years. Orthop Traumatol Surg Res 103:537–541

    CrossRef  CAS  PubMed  Google Scholar 

  120. D’Antonio J, Capello W, Ramakrishnan R (2012) Second-generation annealed highly cross-linked polyethylene exhibits low wear. Clin Orthop Relat Res 470:1696–1704

    CrossRef  PubMed  Google Scholar 

  121. Atwood SA, Van Citters DW, Patten EW, Furmanski J, Ries MD, Pruitt LA (2011) Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J Mech Behav Biomed Mater 4(7):1033–1045

    Google Scholar 

  122. Oral E, Malhi AS, Muratoglu OK (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 27(6):917–925

    Google Scholar 

  123. Pruitt LA (2005) Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26(8):905–915

    CrossRef  CAS  PubMed  Google Scholar 

  124. Ansari F, Gludovatz B, Kozak A, Ritchie RO, Pruitt LA (2016) Notch fatigue of ultra high molecular weight polyethylene (UHMWPE) used in total joint replacements. J Mech Behav Biomed Mater 60:267–279

    Google Scholar 

  125. Oral E, Malhi AS, Muratoglu OK (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 27(6):917–925

    CrossRef  CAS  PubMed  Google Scholar 

  126. Bracco P, Oral E (2011) Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res 469:2286–2293

    CrossRef  PubMed  Google Scholar 

  127. Affatato S, De Mattia J, Bracco P, Pavoni E, Taddei P (2016) Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: the combined effect of accelerated ageing and third body particles during wear test. J Mech Behav Biomed Mater 64:240–252

    CrossRef  CAS  PubMed  Google Scholar 

  128. Kurtz S, Bracco P, Costa L (2009) Vitamin-E-blended UHMWPE biomaterials. In: UHMWPE biomaterials handbook. Elsevier, Amsterdam, The Netherlands, pp 237–247

    Google Scholar 

  129. Kurtz S, Bracco P, Costa L, Oral E, Muratoglu O (2015) Vitamin E-blended UHMWPE biomaterilas. In: Kurtz SM (ed) UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Elsevier, Norwich, NY, USA, 2015, p 840

    Google Scholar 

  130. Ramesh NS, Rasmussen DH, Campbell GA (1991) Theoretical and experimental study of the dynamic of foam growth in thermoplastic materials. ANTEC, pp 1292–1296

    Google Scholar 

  131. Lee S, Park CB, Ramesh NS (2007) Polymeric foams. CRC Press, New York

    Google Scholar 

  132. Rodriguez-Perez MA (2005) Crosslinked polyolefin foams: production, structure, properties, and applications. Adv Polym Sci 184:97–126

    CrossRef  CAS  Google Scholar 

  133. Klempner D, Frisch KC (1991) Handbook of polymeric foams and foam technology. Hanser Publisher, New York

    Google Scholar 

  134. Danaei M, Sheikh N, Taromi FA (2005) Radiation cross-linked polyethylene foam: preparation and properties. J Cell Plast 41:551

    CrossRef  CAS  Google Scholar 

  135. Sims GLA, Sipaut CS (2001) Crosslinking of polyolefin foams: I. Effect of triallyl cyanurate on dicumyl peroxide crosslinking of low-density polyethylene. Cell Polym 20(4)

    Google Scholar 

  136. Zhou H, Wang Z, Xu G, Wang X, Wen B, Jin S (2017) Preparation of crosslinked highdensity polyethylene foam using supercritical CO2 as blowing agent. Cell Polym 36(4)

    Google Scholar 

  137. Cheng S, Dehaye F, Bailly C, Biebuyck J, Legras R, Parks L (2005) Studies on polyethylene pellets modified by low dose radiation prior to part formation. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 236:130–136

    Google Scholar 

  138. Xing Z, Wu G, Huang S, Chen S, Zeng H (2008) Preparation of microcellular cross-linked polyethylene foams by a radiation and supercritical carbon dioxide approach. J Supercrit Fluids 47(2):281–289

    CrossRef  CAS  Google Scholar 

  139. Furukawa (2002) Physically cross-linked polyethylene foam “SlimAce”. Furukawa Rev 22

    Google Scholar 

  140. Park CB, Padareva V, Lee PC, Nagui HE (2005) Extruded open-celled LDPE-based foams using non-homogeneous melt structure. J Polym Eng 25(3)

    Google Scholar 

  141. Below H, Quilitz G, Schumann W (2005) Electron beam crosslinking of large diameter thick-walled polyethylene pipes. Plast Rubbers Compos 34(1)

    Google Scholar 

  142. de Melo RP, Marques MF (2011) PEX synthesized via peroxide for oil pipes, starting from different commercial polyethylenes: influence of comonomer and catalyst type. Macromol Symp 299/300:246–253

    Google Scholar 

  143. Samburski G, Narkis M, Siegmann A (1996) The effect of drawing parameters on the orientation distribution in crosslinked high density polyethylene tubing. J Mater Sci Lett 15:1969

    CrossRef  CAS  Google Scholar 

  144. Jarvenkyla J, Johansson B, Ek C-G, Palmlof M, Ahjopalo L, Kuutti L, Pietila L-O, Neway B, Geddess UW (1999) Oriented crosslinked polyethylene pipes by a novel extrusion method. Macromol Symp 148:373–393

    CrossRef  CAS  Google Scholar 

  145. Sun F, Guo J, Li Y, Bai S, Wang Q (2019) Preparation of high-performance polyethylene tubes under the coexistence of silicone cross-linked polyethylene and rotation extrusion. R Soc Open Sci 6:182095

    Google Scholar 

  146. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316:1014–1017

    Google Scholar 

  147. Hiles M, Grossutti M, Dutcher JR (2019) Classifying formulations of crosslinked polyethylene pipe by applying machine-learning concepts to infrared spectra. J Polym Sci Part B: Polym Phys

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Aljoumaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Aljoumaa, K., Allaf, A.W. (2021). Morphology, Structure, Properties and Applications of XLPE. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0514-7_6

Download citation