Skip to main content

General Applications of XLPE Nanocomposites and Blends

  • Chapter
  • First Online:
Crosslinkable Polyethylene Based Blends and Nanocomposites

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 358 Accesses

Abstract

A plethora of applications are celebrated by the crosslinked polyethylene blends and their nanocomposites. This chapter documents the wide applications of XLPE-based blends and nanocomposites. These materials are tremendously used in various applications like piping and foam industries, orthopaedic, smart shape polymers and cable and wire insulations due to their inherent mechanical, electrical and thermal properties. Due to the ease of processability and control, blending and crosslinking attained great attention in various research areas. Abundant number of polymers are being crosslinked and blended to get innovative products and could be tuned properly even for new-fangled applications. Among the various crosslinked polymer blends and composites, crosslinked polyethylene (XLPE) stands apart from others. Crosslinking and blending improved the thermal, mechanical and electrical properties of polyethylene. Addition of nanofillers to XLPE yields XLPE nanocomposites. These new substitutes promise more sustainable economic systems and give greater modifying freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

DC:

Direct current

DBS:

Dielectric breakdown strength

BN:

Boron nitride

EB:

Electrical breakdown

EPDM:

Ethylene propylene diene rubber

EPR:

Ethylene propylene rubber

EVA:

Ethyl vinyl acetate

FDA:

Food and drug administration

HPTE:

High-performance thermoplastic elastomer

HV:

High voltage

HVDC:

High voltage direct current applications

LDPE:

Low density polyethylene

LLDPE:

Linear low density polyethylene

MH:

Magnesium hydroxides

MV:

Medium voltage

PEX:

Crosslinked polyethylene

POS:

Polyhedral oligomeric silane

SMPs:

Smart shape polymers

UHMWPE:

Ultra high molecular weight polyethylene

XLPE:

Crosslinked polyethylene

References

  1. Hampton RN (2008) Some of the considerations for materials operating under high-voltage, direct current stresses. IEEE Electr Insul Mag 24:5–13

    Article  Google Scholar 

  2. Fortman DJ, Brutman JP, De Hoe GX, Snyder RL, Dichtel WR, Hillmyer MA (2018) Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain Chem Eng 6(9):11145–11159

    Article  CAS  Google Scholar 

  3. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4):74

    Article  Google Scholar 

  4. Tamboli SM, Mhaske ST, Kale DD (2004) Crosslinked polyethylene

    Google Scholar 

  5. Del Prever EMB, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty: past or future? J Orthop Traumatol 10(1):1–8

    Article  Google Scholar 

  6. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties: recipient of the 1999 HAP paul award. J Arthroplasty 16(2):149–160

    Article  CAS  Google Scholar 

  7. Turner A, Okubo Y, Teramura S, Niwa Y, Ibaraki K, Kawasaki T et al (2014) The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended ultra-high molecular weight polyethylene for total knee replacement. J Mech Behav Biomed Mater 31:21–30

    Google Scholar 

  8. Takahashi Y, Yamamoto K, Pezzotti G (2015) Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene(HXL-UHMWPE) in total hip arthroplasty. Acta Materialia Inc, 1742–7061

    Google Scholar 

  9. Shibata N, Tomita N (2005) The anti-oxidative properties of alpha-tocopherol in gamma-irradiated UHMWPE with respect to fatigue and oxidation resistance. Biomaterials 26:5755–5762

    Article  CAS  Google Scholar 

  10. Shen FW (2007) Ultrahigh-molecular-weight polyethylene (UHMWPE) in joint replacement

    Google Scholar 

  11. Oonishi H, Kim SC, Oonishi H Jr, Masuda S, Kyomoto M, Ueno M (2008) Clinical applications of ceramic-polyethylene combinations in joint replacement, Bio ceramics and their clinical applications. In: Woodhead publishing series in biomaterials, pp 699–717

    Google Scholar 

  12. Collier JP, Currier BH, Kennedy FE, Currier JH, Timmins GS, Jackson SK, Brewer RL (2003) Comparison of cross-linked polyethylene materials for orthopaedic applications. Clin Orthop Relat Res 1976–2007(414):289–304

    Article  Google Scholar 

  13. Fu J, Shen J, Gao G, Xu Y, Hou R, Cong Y, Chenga Y (2013) Natural polyphenol-stabilised highly, crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J Mater Chem B 1:4727–4735

    Google Scholar 

  14. Mulliez MA, Fritz B, Holderied M, Schilling C, Grupp TM (2020) In vitro wear performance of X-ray cross-linked vitamin E blended polyethylene. Biotribology 21:100115

    Article  Google Scholar 

  15. Hanley TL, Burford RP, Fleming RJ, Barber KW (2003) A general review of polymeric insulation for use in HVDC cables. IEEE Electr Insul Mag 19:13–24

    Article  Google Scholar 

  16. Hanley TL, Burford RP, Fleming RJ, Barber KW (2003) A general review of polymeric insulation for use in HVDC cables. IEEE Electr Insul Mag 19(1):14–24

    Article  Google Scholar 

  17. Sabet M, Hassan A, Ratnam CT (2012) Polymer degradation and stability, electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym Degrad Stab 97:1432–1437

    Google Scholar 

  18. Haurie L, Fernández A, Velasco JC, Lopez C, Espiell F (2007) Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminum hydroxide/montmorrillonite and magnesium hydroxide/aluminiumhydroxide/montmorillonite mixtures. Polym Degrad Stab 92:1082–1087

    Article  CAS  Google Scholar 

  19. Laia H, Ana IF, Jose IV, Josep M, Jose ML, Ferran E (2006) Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab 91:989–994

    Google Scholar 

  20. Basfar AA, Mosnáček J, Shukri TM, Bahattab MA, Noireaux P, Courdreuse A (2008) Mechanical and thermal properties of blends of low-density polyethylene and ethylene vinyl acetate crosslinked by both dicumyl peroxide and ionizing radiation for wire and cable applications 107:642–649

    Google Scholar 

  21. Mohammed A, Bahattab J, Ahmed AB (2010) Cross-linked poly(ethylene vinylacetate) (EVA)/low density polyethylene (LDPE)/metal hydroxides composites for wire and cable applications. Polym Bull 2010(64):569–580

    Google Scholar 

  22. Kang DAI Electron-beam radiation cross linkable and compatibilized PA11/PA12/LDPE blends with good barrier properties and improved heat resistance for cable sheathing application

    Google Scholar 

  23. Hosier IL, Vaughan AS, Swingler SG (2011) An investigation of the potential of polypropylene and its blends for use in recyclable high voltage cable insulation systems. J Mater Sci 46(11):4058–4070

    Article  CAS  Google Scholar 

  24. Yoshino K, Demura T, Kawahigashi M, Miyashita Y, Kurahashiand K, Matsuda Y (2004) The application of novel polypropylene to the insulation of electric power cable. Electr Eng Jpn 146(1):872–879

    Google Scholar 

  25. Green CD, Vaughan AS, Stevens GC, Pye A, Sutton SJ, Geussens T, Fairhurst MJ (2015) Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer. IEEE Trans Dielectr Electr Insul 22:639–648

    Article  CAS  Google Scholar 

  26. Rodríguez-Pérez MA (2005) Crosslinked polyolefin foams: production, structure, properties, and applications. In: Crosslinking in materials science. Springer, Berlin, Heidelberg, pp 97–126

    Google Scholar 

  27. Rodríguez-Pérez MA, Duijsens A, De Saja JA (1998) Effect of addition of EVA on the technical properties of extruded foam profiles of low-density polyethylene/EVA blends. J Appl Polym Sci 68(8):1237–1244

    Article  Google Scholar 

  28. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49:3–33

    Article  Google Scholar 

  29. Kashif M, Chang YW (2015) Triple-shape memory effects of modified semi crystalline ethylene–propylene–diene rubber/poly (caprolactone) blends. Eur Polym J 70:306–316

    Article  Google Scholar 

  30. Wu L, Jin C, Sun X (2011) Light-induced shape memory effect of multiblock polyester urethanes containing biodegradable segments and pendant cinnamamide groups. Bio macromolecules 12:235–241

    Article  CAS  Google Scholar 

  31. Zhao J, Chen M, Wang X, Zhao X, Wang Z, Dang ZM, Ma L, Hu GH, Chen F (2013) Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl Mater Interfaces 5(12):5550–5556

    Article  CAS  Google Scholar 

  32. Xia Lin, Chen Shuai, Wenxin Fu, Qiu Guixue (2019) Shape memory behaviour of natural eucommia ulmoides gum and low-density polyethylene blends with two response temperatures. Polymers 11:580

    Article  Google Scholar 

  33. Xia L, Chen S, Fu W, Qiu G (2019) Shape memory behavior of natural Eucommia ulmoides gum and low-density polyethylene blends with two response temperatures. Polymers 11(4):580

    Article  Google Scholar 

  34. Reizabal A, Laza JM, Cuevas JM, León LM, Vilas-Vilela JL (2019) PCO-LLDPE thermoresponsive shape memory blends. Towards a new generation of breathable and waterproof smart membranes. Eur Polymer J 119:469–476

    Article  CAS  Google Scholar 

  35. Thomas J, Joseph B, Jose JP, Maria HJ, Main P, Ali Rahman A, Francis B, Ahmad Z, Thomas S (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58(46):20863–20879

    Article  CAS  Google Scholar 

  36. Zhou Y, Peng S, Hu J, He J (2017) Polymeric insulation materials for HVDC cables: development, challenges and future perspective. IEEE Trans Dielectr Electr Insul 24:1308–1318

    Article  CAS  Google Scholar 

  37. Li Z, Du B (2018) Polymeric insulation for high-voltage DC extruded cables: challenges and development directions. IEEE Electr Insul Mag 34:30–43

    Article  Google Scholar 

  38. Park YJ, Kwon JH, Sim JY, Hwang JN, Seo CW, Kim JH, Lim KJ (2014) DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation. Jpn J Appl Phys 53

    Google Scholar 

  39. Tanaka T, Bulinski A, Castellon J, Frechette M, Gubanski S, Kindersberger J, Montanari GC, Nagao M, Morshuis P, Tanaka Y, Pélissou S, Vaughan A, Ohki Y, Reed CW, Sutton S, Han SJ (2011) Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans Dielectr Electr Insul 18(5)

    Google Scholar 

  40. Ashish Sharad P, Kumar KS (2017) Application of surface-modified XLPE nanocomposites for electrical insulation partial discharge and morphological study. Nanocomposites 3(1):30–41

    Google Scholar 

  41. Zhanga C, Zhanga H, Lia C, Duana S, Jiangb Y, Yanga J, Hana B (2018) Hong Zhaoa Crosslinked polyethylene/polypyrrole nanocomposites with improved direct current electrical characteristics. Polym Testing 71:223–230

    Article  Google Scholar 

  42. Li G, Zhou X, Li X, Wei Y, Hao C, Li S, Lei Q (2020) DC breakdown characteristics of XLPE/BNNS nanocomposites considering BN Nano sheet concentration, space charge and temperature. Emerg Mater High Energy Appl 5:280–286

    CAS  Google Scholar 

  43. Hui L, Smith R, Nelson JK, Schadler LS (2009) Electrochemical treeing in XLPE/silica nanocomposites. In: 2009 Annual report conference on electrical insulation and dielectric phenomena

    Google Scholar 

  44. Wahab A, Mansor NS, Ishak D, Kamarol M, Mariatti M, Ghani ABA, Halim HS (2017) Investigation of water tree characteristic in XLPE nanocomposites for medium voltage cable application. In: 2017 International conference on high voltage engineering and power system, 2–5, Oct 2017, Bali, Indonesia

    Google Scholar 

  45. Nagao M, Watanabe S, Murakami Y, Murata Y, Sekiguchi Y, Goshowaki M (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: Proceedings of 2008 international symposium on electrical insulating materials, 7–11 Sept, 2008, Yokkaichi, Mie, Japan

    Google Scholar 

  46. Guo M, Fréchette M, Éric D, Demarquette NR, Daigle JC (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: electrical insulation for high voltage power cables. IEEE Trans Dielectr Electr Insul 24:798–807

    Article  CAS  Google Scholar 

  47. Du BX, Kong XX, Cui B, Li J (2017) Improved capacity of buried HVDC cable with high thermal conductivity LDPE/BN insulation. IEEE Trans Dielectr Electr Insul 24:2667–2676

    Article  CAS  Google Scholar 

  48. Paramane AS, Kumar KS (2016) A review on nanocomposite based electrical insulations. Trans Electr Electron Mater 17(5):239

    Article  Google Scholar 

  49. Aigbodion VS, Achiv FM, Agunsoye OJ, Isah LA (2016) Evaluation of the electrical porcelain properties of alumina-silicate nano-clay. J Chin Adv Mater Soc 4(2):99–109

    Article  CAS  Google Scholar 

  50. Contreras JE, Rodriguez EA, Taha-Tijerina J (2017) Nanotechnology applications for electrical transformers—a review. Electr Power Syst Res 143:573–584

    Article  Google Scholar 

  51. Li W, Yan HD, Zhou Y, Zhang C, Chen X (2017) Supersmooth semiconductive shielding materials use for XLPE HVDC cables. In: 2017 1st International conference on electrical materials and power equipment (ICEMPE). IEEE, pp 447–451

    Google Scholar 

  52. Montanari GC, Seri P, Lei X, Ye H, Zhuag Q, Morshuis P, Stevens G, Vaughan A (2018) Next generation polymeric high voltage direct current cables—a quantum leap needed? IEEE Electr Insul Mag 34:24–31

    Article  Google Scholar 

  53. Roumeli E, Markoulis A, Kyratsi T, Bikiaris D, Chrissafis K (2014) Carbon nanotube-reinforced crosslinked polyethylene pipes for geothermal applications: From synthesis to decomposition using analytical pyrolysis–GC/MS and thermogravimetric analysis. Polym Degrad Stab 100:42–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Radha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radha, D., Lal, J.S., Asha Krishnan, K., Devaky, K.S. (2021). General Applications of XLPE Nanocomposites and Blends. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene Based Blends and Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0486-7_5

Download citation

Publish with us

Policies and ethics