Skip to main content

Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made Core–Shell Catalysts

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1073 Accesses

Abstract

ion

Core-shell structured materials with unique architecture have triggered great attention in catalysis because they confine the active sites into a specific environment and realize the complicated reactions in a single-pass by integrating different functional components into one. In this chapter, the applications of core-shell structured catalysts in C1 molecules (CO, CO2, and CH4) conversion are discussed. The variety of functionalities such as coke-resistance, confinement effect, and functional integration derived from the core-shell structured catalysts guarantees their wide application in C1 catalysis. For syngas (CO + H2) and CO2 conversions, core-shell structured catalysts with different functional components can realize the oriented conversion to target products. The coke-resistances and confinement effects in core-shell structured catalysts endow long-term stability of CH4 conversions (CH4 dry reforming and dehydroaromatization), in which high reaction temperature is needed to activate the inert C-H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou W, Cheng K, Kang J et al (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–3228

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2:1030–1058

    Article  CAS  Google Scholar 

  3. Li J, He Y, Tan L et al (2018) Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology. Nat Catal 1:787–793

    Article  CAS  Google Scholar 

  4. Álvarez A, Bansode A, Urakawa A et al (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wei J, Sun J, Wen Z et al (2016) New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins. Catal Sci Technol 6:4786–4793

    Article  CAS  Google Scholar 

  6. Schwach P, Pan X, Bao X (2017) Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem Rev 117:8497–8520

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Yu J, Corma A (2020) Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv Mater 30:1704439

    Google Scholar 

  8. Wang X, Feng J, Bai Y et al (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060

    Article  CAS  PubMed  Google Scholar 

  9. Kang J, Cheng K, Zhang L et al (2011) Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5–C11 isoparaffins. Angew Chemie-Int Ed 50:5200–5203

    Article  CAS  Google Scholar 

  10. Peng X, Cheng K, Kang J et al (2015) Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chemie-Int Ed 54:4553–4556

    Article  CAS  Google Scholar 

  11. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  PubMed  Google Scholar 

  12. Bao J, Tsubaki N (2018) Design and synthesis of powerful capsule catalysts aimed at applications in C1 chemistry and biomass conversion. Chem Rec 18:4–19

    Article  CAS  PubMed  Google Scholar 

  13. Bao J, Yang G, Yoneyama Y, Tsubaki N (2019) Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal 9:3026–3053

    Article  CAS  Google Scholar 

  14. He J, Liu Z, Yoneyama Y et al (2006) Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. Chem-A Eur J 12:8296–8304

    Article  CAS  Google Scholar 

  15. He J, Yoneyama Y, Xu B et al (2005) Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir 21:1699–1702

    Article  CAS  PubMed  Google Scholar 

  16. Jin Y, Yang G, Chen Q et al (2015) Development of dual-membrane coated Fe/SiO2 catalyst for efficient synthesis of isoparaffins directly from syngas. J Memb Sci 475:22–29

    Article  CAS  Google Scholar 

  17. Li C, Xu H, Kido Y et al (2012) A capsule catalyst with a zeolite membrane prepared by direct liquid membrane crystallization. Chemsuschem 5:862–866

    Article  CAS  PubMed  Google Scholar 

  18. Yang G, Xing C, Hirohama W et al (2013) Tandem catalytic synthesis of light isoparaffin from syngas via Fischer-Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts. Catal Today 215:29–35

    Article  CAS  Google Scholar 

  19. Bao J, He J, Zhang Y et al (2008) A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew Chemie-Int Ed 47:353–356

    Article  CAS  Google Scholar 

  20. Lin Q, Yang G, Li X et al (2013) A catalyst for one-step isoparaffin production via Fischer-Tropsch synthesis: growth of a H-mordenite shell encapsulating a fused iron core. ChemCatChem 5:3101–3106

    Article  CAS  Google Scholar 

  21. Yang G, Tsubaki N, Shamoto J, Yoneyama Y (2010) Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. J Am Chem Soc 132:8129–8136

    Article  CAS  PubMed  Google Scholar 

  22. Lu P, Sun J, Shen D et al (2018) Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface. Appl Energy 209:1–7

    Article  CAS  Google Scholar 

  23. Yang G, Wang D, Yoneyama Y et al (2012) Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis. Chem Commun 48:1263–1265

    Article  CAS  Google Scholar 

  24. Zhang P, Yang G, Tan L et al (2018) Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst. Catal Today 303:77–85

    Article  CAS  Google Scholar 

  25. Phienluphon R, Pinkaew K, Yang G et al (2015) Designing core (Cu/ZnO/Al2O3)-shell (SAPO-11) zeolite capsule catalyst with a facile physical way for dimethyl ether direct synthesis from syngas. Chem Eng J 270:605–611

    Article  CAS  Google Scholar 

  26. Tan L, Wang F, Zhang P et al (2020) Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chem Sci 11:4097–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng K, Kang J, Huang S et al (2012) Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catal 2:441–449

    Article  CAS  Google Scholar 

  28. Kim JC, Lee S, Cho K et al (2014) Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer-Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range. ACS Catal 4:3919–3927

    Article  CAS  Google Scholar 

  29. Cheng Q, Tian Y, Lyu S et al (2018) Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat Commun 9:3250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Přech J, Strossi Pedrolo DR, Marcilio NR et al (2020) Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels. ACS Catal 10:2544–2555

    Article  CAS  Google Scholar 

  31. Wang C, Zhang J, Qin G et al (2020) Direct conversion of syngas to ethanol within zeolite crystals. Chem 6:646–657

    Article  CAS  Google Scholar 

  32. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703

    Article  CAS  PubMed  Google Scholar 

  33. Guo L, Sun J (2018) Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. J Mater Chem A 6:23244–23262

    Article  CAS  Google Scholar 

  34. Xie C, Chen C, Yu Y et al (2017) Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett 17:3798–3802

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Yang G, Zhang J et al (2016) Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation. Chem Commun 52:7352–7355

    Article  CAS  Google Scholar 

  36. Li H, Zhang P, Guo L et al (2020) A well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefied petroleum gas. Chemsuschem 13:2060–2065

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Kazumi S, Gao W et al (2020) Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Appl Catal B Environ 269:118792

    Article  CAS  Google Scholar 

  38. Wei J, Ge Q, Yao R et al (2017) Directly converting CO2 into a gasoline fuel. Nat Commun 8:15174

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao P, Dang S, Li S et al (2018) Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal 8:571–578

    Article  CAS  Google Scholar 

  40. Wang Y, Gao W, Kazumi S et al (2019) Direct and oriented conversion of CO2 into value-added aromatics. Chem-A Eur J 25:5149–5153

    Article  CAS  Google Scholar 

  41. Das S, Pérez-Ramírez J, Gong J et al (2020) Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 49:2937–3004

    Article  CAS  PubMed  Google Scholar 

  42. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl Catal A Gen 197:191–200

    Article  CAS  Google Scholar 

  43. Li Z, Mo L, Kathiraser Y, Kawi S (2014) Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536

    Article  CAS  Google Scholar 

  44. Das S, Ashok J, Bian Z et al (2018) Silica-ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights. Appl Catal B Environ 230:220–236

    Article  CAS  Google Scholar 

  45. Yue L, Li J, Chen C et al (2018) Thermal-stable Pd@mesoporous silica core-shell nanocatalysts for dry reforming of methane with good coke-resistant performance. Fuel 218:335–341

    Article  CAS  Google Scholar 

  46. Tomkins P, Ranocchiari M, Van Bokhoven JA (2017) Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc Chem Res 50:418–425

    Article  CAS  PubMed  Google Scholar 

  47. Ravi M, Ranocchiari M, van Bokhoven JA (2017) The direct catalytic oxidation of methane to methanol-a critical assessment. Angew Chemie-Int Ed 56:16464–16483

    Article  CAS  Google Scholar 

  48. Grundner S, Markovits MAC, Li G et al (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:7546

    Article  PubMed  CAS  Google Scholar 

  49. Jin Z, Wang L, Zuidema E et al (2020) Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367:193–197

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Tao L, Xie M et al (1993) Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal Letters 21:35–41

    Article  CAS  Google Scholar 

  51. Zhu P, Yang G, Sun J et al (2017) A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. J Mater Chem a 5:8599–8607

    Article  CAS  Google Scholar 

  52. Guo X, Fang G, Li G et al (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritatsu Tsubaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Tsubaki, N. (2021). Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made Core–Shell Catalysts. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_7

Download citation

Publish with us

Policies and ethics