Skip to main content

Fabrication of Core–Shell Structured Metal Nanoparticles@Metal–Organic Frameworks for Heterogeneous Thermal Catalysis

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1095 Accesses

Abstract

Metal-organic frameworks (MOFs) encapsulating metal nanoparticles (NPs) with core-shell structures have been recognized as emerging materials for heterogeneous catalysis, because they possess great potential for not only avoiding migration and aggregation of metal NPs but also generating the uniform and well-defined interfaces between metal cores and porous shells for achieving the excellent catalytic performances. In this chapter, we summarize the state-of-the art progress in synthesis of core–shell metal NPs@MOFs with various methods including ship-in-a-bottle approach and bottle-around-ship approach. After that, we discuss various catalytic applications of metal NPs@MOFs as well as the relationships among metal NPs, unsaturated metal nodes, functional groups, pore structures, function synergy, and catalytic performances. Finally, we propose the emergent challenges and future developments of metal NPs@MOFs nanocatalysts in heterogeneous thermal catalysis. We hope that this chapter will bring the better insights to construct the enabled metal NPs@MOFs for realization of excellent activity for energetically challenging reactions, high selectivity to valuable products, and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhong CJ, Maye MM (2001) Core-shell assembled nanoparticles as catalysts. Adv Mater 13:1507–1511

    Article  CAS  Google Scholar 

  2. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773

    Article  CAS  PubMed  Google Scholar 

  3. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  PubMed  Google Scholar 

  4. Li WC, Comotti M, Schüth F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal 237:190–196

    Article  CAS  Google Scholar 

  5. Li G, Tang Z (2014) Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6:3995–4011

    Article  CAS  PubMed  Google Scholar 

  6. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38:1430–1449

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Xu Q, Jiang HL (2017) Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    Article  CAS  PubMed  Google Scholar 

  9. Li G, Zhao S, Zhang Y, Tang Z (2018) Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater 30:1800702

    Article  CAS  Google Scholar 

  10. Hu P, Morabito JV, Tsung CK (2014) Core-shell catalysts of metal nanoparticle core and metal-organic framework shell. ACS Catal 4:4409–4419

    Article  CAS  Google Scholar 

  11. Luan Y, Qi Y, Gao H, Zheng N, Wang G (2014) Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. J Mater Chem a 2:20588–20596

    Article  CAS  Google Scholar 

  12. Volosskiy B, Niwa K, Chen Y, Zhao Z, Weiss NO, Zhong X, Ding M, Lee C, Huang Y, Duan X (2015) Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. ACS Nano 9:3044–3049

    Article  CAS  PubMed  Google Scholar 

  13. Aijaz A, Karkamkar A, Choi YJ, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929

    Article  CAS  PubMed  Google Scholar 

  14. Xiao YY, Liu XL, Chang GG, Pu C, Tian G, Wang LY, Liu JW, Ma XC, Yang XY, Chen B (2020) Construction of a functionalized hierarchical pore metal-organic framework via a palladium-reduction induced strategy. Nanoscale 12:6250–6255

    Article  CAS  PubMed  Google Scholar 

  15. Chen DX, Yang WJ, Jiao L, Li LY, Yu SH, Jiang HL (2020) Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: the roles of electron transfer and adsorption energy. Adv Mater 32:2000041

    Article  CAS  Google Scholar 

  16. Sun D, Li Z (2016) Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2-UiO-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J Phys Chem C 120:19744–19750

    Article  CAS  Google Scholar 

  17. Zhu QL, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213

    Article  CAS  PubMed  Google Scholar 

  18. Chen YZ, Zhou YX, Wang HW, Lu JL, Uchida T, Xu Q, Yu SH, Jiang HL (2015) Multifunctional PdAg@MIL-101 for one-Pot cascade reactions: combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal 5:2062–2069

    Article  CAS  Google Scholar 

  19. Chen YZ, Gu BC, Uchida T, Liu JD, Liu XC, Ye BJ, Xu Q, Jiang HL (2019) Location determination of metal nanoparticles relative to a metal-organic framework. Nat Commun 10:3462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Goh TW, Tsung CK, Huang WY (2019) Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Appl Mater Interfaces 11:23254–23260

    Article  CAS  PubMed  Google Scholar 

  21. Zhao M, Deng K, He L, Liu Y, Li G, Zhao H, Tang Z (2014) Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J Am Chem Soc 136:1738–1741

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, He L, Zheng J, Guo J, Bi F, Ma X, Zhao K, Liu Y, Song R, Tang Z (2015) Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv Mater 27:3273–3277

    Article  CAS  PubMed  Google Scholar 

  23. Rungtaweevoranit B, Baek J, Araujo JR, Archanjo BS, Choi KM, Yaghi OM, Somorjai GA (2016) Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett 16:7645–7649

    Article  CAS  PubMed  Google Scholar 

  24. Hu P, Zhuang J, Chou LY, Lee HK, Ling XY, Chuang YC, Tsung CK (2014) Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. J Am Chem Soc 136:10561–10564

    Article  CAS  PubMed  Google Scholar 

  25. Osterrieth JWM, Wright D, Noh H, Kung CW, Vulpe D, Li A, Park JE, Van Duyne RP, Moghadam PZ, Baumberg JJ, Farha OK, Fairen-Jimenez D (2019) Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes. J Am Chem Soc 141:3893–3900

    Article  CAS  PubMed  Google Scholar 

  26. Zheng G, de Marchi S, López-Puente V, Sentosun K, Polavarapu L, Pérez-Juste I, Hill EH, Bals S, Liz-Marzán LM, Pastoriza-Santos I, Pérez-Juste J (2016) Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 12:3935–3943

    Article  CAS  PubMed  Google Scholar 

  27. Lu G, Li SZ, Guo Z, Farha OK, Hauser BG, Qi XY, Wang Y, Wang X, Han SY, Liu XG, DuChene JS, Zhang H, Zhang QC, Chen XD, Ma J, Loo SCJ, Wei WD, Yang YH, Hupp JT, Huo FW (2012) Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Lu G, Cui C, Liu Y, Li S, Yan W, Xing C, Chi YR, Yang Y, Huo F (2014) A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv Mater 26:4056–4060

    Article  CAS  PubMed  Google Scholar 

  29. Zhang WL, Shi WX, Ji WL, Wu HB, Gu ZD, Wang P, Li XH, Qin PS, Zhang J, Fan Y, Wu TY, Fu Y, Zhang WN, Huo FW (2020) Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal 10:5805–5813

    Article  CAS  Google Scholar 

  30. Meng F, Zhang S, Ma L, Zhang W, Li M, Wu T, Li H, Zhang T, Lu X, Huo F, Lu J (2018) Construction of hierarchically porous nanoparticles@metal-organic frameworks composites by inherent defects for the enhancement of catalytic efficiency. Adv Mater 30:1803263

    Article  CAS  Google Scholar 

  31. Ogiwara N, Kobayashi H, Inuka M, Nishiyama Y, Concepcion P, Rey F, Kitagawa H (2020) Ligand-functionalization-controlled activity of metal-organic framework-encapsulated Pt nanocatalyst toward activation of water. Nano Lett 20:426–432

    Article  CAS  PubMed  Google Scholar 

  32. Aoyama Y, Kobayashi H, Yamamoto T, Toriyama T, Matsumura S, Haneda M, Kitagawa H (2020) Significantly enhanced CO oxidation activity induced by a change in the CO adsorption site on Pd nanoparticles covered with metal-organic frameworks. Chem Commun 56:3839–3842

    Article  CAS  Google Scholar 

  33. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80

    Article  CAS  PubMed  Google Scholar 

  34. Choe K, Zheng F, Wang H, Yuan Y, Zhao W, Xue G, Qiu X, Ri M, Shi X, Wang Y, Li G, Tang Z (2020) Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew Chem Int Ed 59:3650–3657

    Article  CAS  Google Scholar 

  35. Jiang Y, Zhang X, Dai XP, Sheng Q, Zhuo HY, Yong JX, Wang Y, Yu KM, Yu L, Luan CL, Wang H, Zhu YC, Duan XN, Che PY (2017) In situ synthesis of core-shell Pt-Cu frame@metal-organic frameworks as multifunctional catalysts for hydrogenation reaction. Chem Mater 29:6336–6345

    Article  CAS  Google Scholar 

  36. Guo Z, Dai X, Yang Y, Zhang Z, Zhang X, Mi S, Xu K, Li Y (2013) Highly stable and active PtNiFe dandelion-like alloys for methanol electrooxidation. J Mater Chem A 1:13252–13260

    Article  CAS  Google Scholar 

  37. Li Z, Yu R, Huang J, Shi Y, Zhang D, Zhong X, Wang D, Wu Y, Li Y (2015) Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat Commun 6:8248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z (2013) Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 52:3741–3745

    Article  CAS  Google Scholar 

  39. Chen LY, Chen HR, Li YW (2014) One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem Commun 50:14752–14755

    Article  CAS  Google Scholar 

  40. Chen LY, Chen XD, Liu HL, Bai CH, Li YW (2015) One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. J Mater Chem A 3:15259–15264

    Article  CAS  Google Scholar 

  41. Li XC, Zhang ZH, Xiao WM, Deng SJ, Chen C, Zhang N (2019) Mechanochemistry-assisted encapsulation of metal nanoparticles in MOF matrices via a sacrificial strategy. J Mater Chem A 7:14504–14509

    Article  CAS  Google Scholar 

  42. Liu Y, Shen Y, Zhang WN, Weng JN, Zhao MT, Zhu TS, Chi YGR, Yang YH, Zhang H, Huo FW (2019) Engineering channels of metal-organic frameworks to enhance catalytic selectivity. Chem Commun 55:11770–11773

    Article  CAS  Google Scholar 

  43. Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett 14:5979–5983

    Article  PubMed  CAS  Google Scholar 

  44. Yuan K, Song T, Wang D, Zhang X, Gao X, Zou Y, Dong H, Tang Z, Hu W (2018) Effective and selective catalysts for cinnamaldehyde hydrogenation: hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew Chem Int Ed 57:5708–5713

    Article  CAS  Google Scholar 

  45. Ogiwara N, Kobayashi H, Concepción P, Rey F, Kitagawa H (2019) The first study on the reactivity of water vapor in metal-organic frameworks with platinum nanocrystals. Angew Chem Int Ed 58:11731–11736

    Article  CAS  Google Scholar 

  46. Li X, Goh TW, Li L, Xiao C, Guo Z, Zeng XC, Huang W (2016) Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal-organic frameworks. ACS Catal 6:3461–3468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Tang, Z. (2021). Fabrication of Core–Shell Structured Metal Nanoparticles@Metal–Organic Frameworks for Heterogeneous Thermal Catalysis. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_6

Download citation

Publish with us

Policies and ethics