Skip to main content

Core–Shell Nanostructured Catalysts for Chemoselective Hydrogenations

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Selective hydrogenation of targeted functional groups in the presence of other reducible groups is very important. However, it is significantly challenging in fine chemical synthesis. In particular, chemoselective hydrogenation of functional groups with retaining alkene groups is extremely difficult because alkene groups are easily reducible. To date, various approaches using metal nanoparticle catalysts to achieve high chemoselectivity have been proposed. However, there are only a few studies on chemoselective hydrogenations using core–shell metal nanoparticle catalysts. This section highlights the rational design of a catalyst strategy for chemoselective hydrogenation using core–shell metal nanoparticles, and the high catalytic performance of core–shell nanoparticles based on their unique structure. The developed core–shell metal nanoparticle catalysts such as Ag@CeO2 and Au@CeO2 for the chemoselective hydrogenation of nitro, carbonyl, epoxide, and alkyne moieties in the presence of alkene groups are discussed. These precisely designed core–shell nanoparticle catalysts showed high activity and chemoselectivity, which cannot be achieved by conventional metal nanoparticle catalysts. Moreover, these catalysts are easily recoverable and reusable without significant loss of activity and selectivity. In the rest of this section, a promising strategy for the green one-step synthesis of core–shell nanoparticle catalysts is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tauster SJ, Fung SC, Baker RT, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211:1121–1125

    Article  CAS  Google Scholar 

  2. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122

    Article  CAS  Google Scholar 

  3. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  4. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  5. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228

    Article  CAS  Google Scholar 

  6. Booth G (2002) Ullmanns encyclopedia of industrial chemistry. Wiley-VCH Verlag, Weinheim, Germany

    Google Scholar 

  7. Blaser HU, Siegrist U, Steiner H, Studer M (2001) In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, p 389

    Google Scholar 

  8. Houben-Weyl (1980) Methoden der Organischen Chemie. Thieme Verlag Stuttgart, 4/1c, p 511

    Google Scholar 

  9. Downing RS, Kunkeler PJ, van Bekkum H (1997) Catalytic syntheses of aromatic amines. Catal Today 37:121–136

    Article  CAS  Google Scholar 

  10. Blaser HU, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1:210–221

    Article  CAS  Google Scholar 

  11. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  12. Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2010) Highly chemoselective reduction of nitroaromatic compounds using a hydrotalcite-supported silver-nanoparticle catalyst under a CO atmosphere. Chem Lett 39:223–225

    Article  CAS  Google Scholar 

  13. Mikami Y, Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2010) Selective deoxygenation of styrene oxides under a CO atmosphere using silver nanoparticle catalyst. Tetrahedron Lett 51:5466–5468

    Article  CAS  Google Scholar 

  14. Mitsudome T, Noujima A, Mikami Y, Mizugaki T, Jitsukawa K, Kaneda K (2010) Supported gold and silver nanoparticles for catalytic deoxygenation of epoxides into alkenes. Angew Chem Int Ed 49:5545–5548

    Article  CAS  Google Scholar 

  15. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angew Chem Int Ed 51:136–139

    Article  CAS  Google Scholar 

  16. Corey EJ, Su WG (1987) Total synthesis of a C15 ginkgolide, (.+-.)-bilobalide. J Am Chem Soc 109:7534–7536

    Article  CAS  Google Scholar 

  17. Kraus GA, Thomas PJ (1988) Synthesis of 7,7,8-trideuteriated trichothecenes. J Org Chem 53:1395–1397

    Article  CAS  Google Scholar 

  18. Johnson WS, Plummer MS, Reddy SP, Bartlett WR (1993) The fluorine atom as a cation-stabilizing auxiliary in biomimetic polyene cyclizations. 4. Total synthesis of dl-ß-amyrin. J Am Chem Soc 115:515–521

    Article  CAS  Google Scholar 

  19. Silverman RB (1981) Model studies for a molecular mechanism of action of oral anticoagulants. J Am Chem Soc 103:3910–3915

    Article  CAS  Google Scholar 

  20. Preusch PC, Suttie JW (1983) A chemical model for the mechanism of vitamin K epoxide reductase. J Org Chem 48:3301–3305

    Article  CAS  Google Scholar 

  21. Mitsudome T, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2013) Core-shell AgNP@CeO2 nanocomposite catalyst for highly chemoselective reductions of unsaturated aldehydes. Chem Eur J 19:5255–5258

    Article  CAS  Google Scholar 

  22. Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638

    Article  CAS  Google Scholar 

  23. Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3:478–483

    Article  CAS  Google Scholar 

  24. Zhang S, Hao Y, Su D, Doan-Nguyen VVT, Wu Y, Li J, Sun S, Murray CB (2014) Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J Am Chem Soc 136:15921–15924

    Article  CAS  Google Scholar 

  25. Lai J, Shafi KVPM, Ulman A, Loos K, Popovitz-Biro R, Lee Y, Vogt T, Estournes C (2005) One-step synthesis of core(Cr)/shell(γ-Fe2O3) nanoparticles. J Am Chem Soc 127:5730–5731

    Article  CAS  Google Scholar 

  26. Lee WR, Kim MG, Choi JR, Park JL, Ko SJ, Oh SJ, Cheon J (2005) Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles. J Am Chem Soc 127:16090–16097

    Article  CAS  Google Scholar 

  27. Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327

    Article  CAS  Google Scholar 

  28. Park S, Yoon D, Bang S, Kim J, Baik H, Yang H, Lee K (2015) Formation of a Cu@RhRu core–shell concave nanooctahedron via Ru-assisted extraction of Rh from the Cu matrix and its excellent electrocatalytic activity toward the oxygen evolution reaction. Nanoscale 7:15065–15069

    Article  CAS  Google Scholar 

  29. Cargnello M, Wieder NL, Montini T, Gorte RJ, Fornasiero P (2010) Synthesis of dispersible Pd@CeO2 core−shell Nanostructures by self-assembly. J Am Chem Soc 132:1402–1409

    Article  CAS  Google Scholar 

  30. Qu F, Wang Y, Liu J, Wen S, Chen Y, Ruan S (2014) Fe3O4–NiO core–shell composites: hydrothermal synthesis and toluene sensing properties. Mater Lett 132:167–170

    Article  CAS  Google Scholar 

  31. Lim Y, Kim SK, Lee SC, Choi J, Nahm KS, Yoo SJ, Kim P (2014) One-step synthesis of carbon-supported Pd@Pt/C core–shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability. Nanoscale 6:4038–4042

    Article  CAS  Google Scholar 

  32. Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J Am Chem Soc 137:13452–13455

    Article  CAS  Google Scholar 

  33. Lindlar H (1952) Ein neuer katalysator fur selektive hydrierungen. Helv Chim Acta 35:446–450

    Article  CAS  Google Scholar 

  34. Yan M, Jin T, Ishikawa Y, Minato T, Fujita T, Chen LY, Bao M, Asao N, Chen MW, Yamamoto Y (2012) Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives. J Am Chem Soc 134:17536–17542

    Article  CAS  Google Scholar 

  35. Vasilikogiannaki E, Titilas I, Vassilikogiannakis G, Stratakis M (2015) cis-Semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions. Chem Commun 51:2384–2387

    Article  CAS  Google Scholar 

  36. Wagh YS, Asao N (2015) Selective Transfer semihydrogenation of alkynes with nanoporous gold catalysts. J Org Chem 80:847–851

    Article  CAS  Google Scholar 

  37. Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2011) Selective deoxygenation of epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported gold catalyst: a concerted effect between gold nanoparticles and basic sites on a support. Angew Chem Int Ed 50:2986–2989

    Article  CAS  Google Scholar 

  38. Urayama T, Mitsudome T, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2016) Green, multi–gram one–step synthesis of core–shell nanocomposites in water and their catalytic application to chemoselective hydrogenations. Chem Eur J 22:17962–17966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takato Mitsudome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitsudome, T. (2021). Core–Shell Nanostructured Catalysts for Chemoselective Hydrogenations. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_3

Download citation

Publish with us

Policies and ethics