Skip to main content

Synthesis of Plasmonic Catalyst with Core-Shell Structure for Visible Light Enhanced Catalytic Performance

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 954 Accesses

Abstract

Nanostructured Au is capable of harvesting and converting the abundant sunlight to chemical energy due to the localized surface plasmon resonances (LSPRs). Plasmonic materials have shown great potentials for promoting the catalytic performance of various chemical reactions. To maximize solar energy utilization and catalytic performance, the rational design and precise manipulation of plasmonic nanostructures are, therefore, essential for harvesting and converting solar energy, as well as hot electron transfer. In this chapter, we focus on the recent progress and trend in the exploitation of highly efficient and robust Au-based plasmonic catalysts for enhancing Pd-catalyzed chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boukha Z, Choya A, Cortes-Reyes M, de Rivas B, Alemany LJ, Gonzalez-Velasco JR, Gutierrez-Ortiz JI, Lopez-Fonseca R (2020) Influence of the calcination temperature on the activity of hydroxyapatite-supported palladium catalyst in the methane oxidation reaction. Appl Catal B-Environ 277:119280

    Article  CAS  Google Scholar 

  2. Tan C, Qasim M, Pang WM, Chen CL (2020) Ligand-metal secondary interactions in phosphine-sulfonate palladium and nickel catalyzed ethylene (co)polymerization. Polym Chem 11:411–416

    Article  CAS  Google Scholar 

  3. Yin JJ, Zhan FK, Jiao TF, Deng HZ, Zou GD, Bai ZH, Zhang QR, Peng QM (2020) Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin Chem Lett 31:992–995

    Article  CAS  Google Scholar 

  4. Fu Y, Wang G, Mei T, Li JH, Wang JY, Wang XB (2017) Accessible graphene aerogel for efficiently harvesting solar energy. Acs Sustain Chem Eng 5:4665–4671

    Article  CAS  Google Scholar 

  5. Hou Y, Vidu R, Stroeve P (2011) Solar energy storage methods. Ind Eng Chem Res 50:8954–8964

    Article  CAS  Google Scholar 

  6. Mohapatra SK, Kondamudi N, Banerjee S, Misra M (2008) Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. Langmuir 24:11276–11281

    Article  CAS  Google Scholar 

  7. Xiang S, Zhang Z, Wu Z, Sun L, Radjenovic P, Ren H, Lin C, Tian Z, Li J (2018) 3D Heterostructured Ti-based Bi2MoO6/Pd/TiO2 photocatalysts for high-efficiency solar light driven photoelectrocatalytic hydrogen generation. ACS Appl Energy Mater 2:558–568

    Article  Google Scholar 

  8. Tudu B, Nalajala N, K PR, Saikia P, Gopinath CS (2019) Electronic integration and thin film aspects of Au-Pd/rGO/TiO2 for improved solar hydrogen generation. ACS Appl Mater Interfaces 11:32869–32878

    Google Scholar 

  9. Cui J, Li Y, Liu L, Chen L, Xu J, Ma J, Fang G, Zhu E, Wu H, Zhao L, Wang L, Huang Y (2015) Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett 15:6295–6301

    Article  CAS  Google Scholar 

  10. Kim HJ, Jackson DHK, Lee J, Guan YX, Kuech TF, Huber GW (2015) Enhanced activity and stability of TiO2-coated cobalt/carbon catalysts for electrochemical water oxidation. Acs Cataly 5:3463–3469

    Article  CAS  Google Scholar 

  11. Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2012) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 12:26–32

    Article  CAS  Google Scholar 

  12. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  13. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  14. Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photoch Photobio C 9:157–170

    Article  CAS  Google Scholar 

  15. Watanabe K, Menzel D, Nilius N, Freund HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320

    Article  CAS  Google Scholar 

  16. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  17. Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109:18218–18222

    Article  CAS  Google Scholar 

  18. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  19. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  20. Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134:3995–3998

    Article  CAS  Google Scholar 

  21. Huang Q, Hu S, Zhuang J, Wang X (2012) MoO3-x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chemistry 18:15283–15287

    Article  CAS  Google Scholar 

  22. Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem 53:2910–2914

    Article  CAS  Google Scholar 

  23. Alsaif MM, Latham K, Field MR, Yao DD, Medhekar NV, Beane GA, Kaner RB, Russo SP, Ou JZ, Kalantar-zadeh K (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937

    Article  CAS  Google Scholar 

  24. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  25. Kong LN, Chen W, Ma DK, Yang Y, Liu SS, Huang SM (2012) Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J Mater Chem 22:719–724

    Article  CAS  Google Scholar 

  26. Cheng H, Meng X, He L, Lin W, Zhao F (2014) Supported polyethylene glycol stabilized platinum nanoparticles for chemoselective hydrogenation of halonitrobenzenes in scCO2. J Colloid Interface Sci 415:1–6

    Article  CAS  Google Scholar 

  27. Ni WH, Kou X, Yang Z, Wang JF (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686

    Article  CAS  Google Scholar 

  28. Gao F, Wang YL, Goodman DW (2009) CO Oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: CO adsorption-induced surface segregation and reaction kinetics. J Phys Chem C 113:14993–15000

    Article  CAS  Google Scholar 

  29. Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H, Jia J, Chen C, Zhao J (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801

    Article  CAS  Google Scholar 

  30. Wen M, Mori K, Kuwahara Y, Yamashita H (2016) Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H2 production from formic acid. ACS Energy Lett 2:1–7

    Article  Google Scholar 

  31. Tedsree K, Li T, Jones S, Chan CW, Yu KM, Bagot PA, Marquis EA, Smith GD, Tsang SC (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307

    Article  CAS  Google Scholar 

  32. Wen MC, Takakura S, Fuku K, Mori K, Yamashita H (2015) Enhancement of Pd-catalyzed Suzuki-Miyaura coupling reaction assisted by localized surface plasmon resonance of Au nanorods. Catal Today 242:381–385

    Article  CAS  Google Scholar 

  33. Jung S, Shuford KL, Park S (2011) Optical property of a colloidal solution of platinum and palladium nanorods: localized surface plasmon resonance. J Phys Chem C 115:19049–19053

    Article  CAS  Google Scholar 

  34. Wang F, Li C, Chen H, Jiang R, Sun LD, Li Q, Wang J, Yu JC, Yan CH (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601

    Article  CAS  Google Scholar 

  35. Chen H, Shao L, Ming T, Sun Z, Zhao C, Yang B, Wang J (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. Small 6:2272–2280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taicheng An or Hiromi Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, M., Mori, K., Kuwahara, Y., Li, G., An, T., Yamashita, H. (2021). Synthesis of Plasmonic Catalyst with Core-Shell Structure for Visible Light Enhanced Catalytic Performance. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_15

Download citation

Publish with us

Policies and ethics