Skip to main content

Core–Shell Structured Zeolite Catalysts with Minimal Defects for Improvement of Shape Selectivity

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

An aluminum-containing zeolite (shell) was coated with aluminum-free zeolite (core) by crystal overgrowth to form zeolites with a core–shell structure (core–shell zeolites). Fluoride ion as a mineralizer in both the core zeolite synthesis and the crystal overgrowth of the core zeolite with the shell zeolite was necessary to form the core–shell zeolite with minimal defects, leading to complete passivation of acid sites on the external surface. When the core–shell zeolite with MFI structure was used as a catalyst for toluene methylation with methanol, the selectivity for p-xylene reached 95.8%. This indicated that there were no acid sites on the external surface. The core–shell zeolite with TON structure was pressed to break needle-like particles for the formation of new acid sites on the pore mouths of smaller broken particles. The broken core–shell zeolite showed high catalytic activity and selectivity for skeletal isomerization of n-tetradecane because the acid sites on the side surface of the needle-like particles, which mainly catalyzed the cracking of alkanes, were passivated. The core–shell zeolites with minimal defects can be used for other applications such as precursors of hollow zeolites with minimal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csicsery SM (1984) Shape-selective catalysis in zeolites. Zeolites 4:202–213

    Article  CAS  Google Scholar 

  2. Niwa M, Kato M, Hattori T, Murakami Y (1986) Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon methoxide. J Phys Chem 90:6233–6237

    Article  CAS  Google Scholar 

  3. Hibino T, Niwa M, Murakami Y (1991) Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J Catal 128:551–558

    Article  CAS  Google Scholar 

  4. Wang I, Ay CL, Lee BJ, Chen MH (1989) Para-selectivity of dialkylbenzenes over modified HZSM-5 by vapour phase deposition of silica. Appl Catal 54:257–266

    Article  CAS  Google Scholar 

  5. Röger HP, Krämer M, Müller KP, O’Connor CT (1998) Effects of in-situ chemical vapour deposition using tetraethoxysilane on the catalytic and sorption properties of ZSM-5. Micropor Mesopor Mater 21:607–614

    Article  Google Scholar 

  6. Manstein H, Möller KP, Böhringer W, O’Connor CT (2002) Effect of the deposition temperature on the chemical vapour deposition of tetraethoxysilane on ZSM-5. Micropor Mesopor Mater 51:35–42

    Article  CAS  Google Scholar 

  7. O’Connor CT, Möller KP, Manstein H (2002) The effect of temperature and cyclic alkoxysilane deposition procedures on the silanisation and subsequent catalytic and sorption properties of zeolites. J Mol Catal A 181:15–24

    Article  Google Scholar 

  8. O’Connor CT, Möller KP, Manstein H (2007) The effect of silanisation on the catalytic and sorption properties of zeolites. KONA 25:230–236

    Article  Google Scholar 

  9. Rollmann LD (1980) ZSM-5 Containing aluminum-free shells on its surface. US Patent 4203869

    Google Scholar 

  10. Lee CS, Park TJ, Lee XY (1993) Alkylation of toluene over double structure ZSM-5 type catalysts covered with a silicalite shell. Appl Catal A 96:151–161

    Article  CAS  Google Scholar 

  11. Weber RW, Fletcher JCQ, Möller KP, O’Connor CT (1996) The characterization and elimination of the external acidity of ZSM-5. Micropor Mater 7:15–25

    Article  CAS  Google Scholar 

  12. Bouizi Y, Rouleau L, Valtchev VP (2006) Factors controlling the formation of core–shell zeolite–zeolite composites. Chem Mater 18:4959–4966

    Article  CAS  Google Scholar 

  13. Li Q, Wang Z, Hedlund J, Creaser D, Zhang H, Zou X, Bons AJ (2005) Synthesis and characterization of colloidal zoned MFI crystals. Micropor Mesopor Mater 78:1–10

    Article  CAS  Google Scholar 

  14. Ghorbanpour A, Gumidyala A, Grabow LC, Crossley SP, Rimer JD (2015) Epitaxial growth of ZSM-5@silicalite-1: a core–shell zeolite designed with passivated surface acidity. ACS Nano 9:4006–4016

    Article  CAS  PubMed  Google Scholar 

  15. Vu DV, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K (2006) Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. J Catal 243:389–394

    Article  CAS  Google Scholar 

  16. Vu DV, Miyamoto M, Nishiyama N, Ichikawa S, Egashira Y, Ueyama K (2008) Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Micropor Mesopor Mater 115:106–112

    Article  CAS  Google Scholar 

  17. Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K (2005) Single crystals of ZSM-5/silicate composites. Adv Mater 17:1985–1988

    Article  CAS  Google Scholar 

  18. Vu DV, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K (2009) Morphology control of silicalite/HZSM-5 composite catalysts for the formation of para-xylene. Catal Lett 127:233–238

    Article  CAS  Google Scholar 

  19. Okamoto M, Osafune Y (2011) MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Micropor Mesopor Mater 142:413–418

    Article  CAS  Google Scholar 

  20. Lombard A, Simon-Masseron A, Rouleau L, Cabiac A, Patarin J (2010) Synthesis and characterization of core/shell Al-ZSM-5/silicalite-1 zeolite composites prepared in one step. Micropor Mesopor Mater 129:220–227

    Article  CAS  Google Scholar 

  21. Guth JL, Kessler H, Wey R (1986) New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud Surf Sci Catal 28:121–128

    Article  CAS  Google Scholar 

  22. Axon SA, Klinowski J (1992) Synthesis and characterization of defect-free crystals of MFI-type zeolites. Appl Catal A 81:27–34

    Article  CAS  Google Scholar 

  23. Koller H, Wöllker A, Villaescusa LA, Díaz-Cabañas MJ, Valencia S, Camblor MA (1999) Five-coordinate silicon in high-silica zeolites. J Am Chem Soc 121:3368–3376

    Article  CAS  Google Scholar 

  24. Ernst S, Weitkamp J, Martens JA, Jacobs PA (1989) Synthesis and shape-selective properties of ZSM-22. Appl Catal 48:137–148

    Article  CAS  Google Scholar 

  25. Martens JA, Parton R, Uytterhoeven L, Jacobs PA, Froment GF (1991) Selective conversion decane into branched isomers- a comparison of platinum/ZSM-22, platinum/ZSM-5 and platinum/USY zeolite catalysts. Appl Catal 76:95–116

    Article  CAS  Google Scholar 

  26. Martens JA, Souverijns W, Verrelst W, Parton R, Froment GF, Jacobs PA (1995) Selective Isomerization of hydrocarbon chains on external surfaces of zeolite crystals. Angew Chem Int Ed Engl 34:2528–2530

    Article  CAS  Google Scholar 

  27. Claude MC, Martens JA (2000) Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst. J Catal 190:39–48

    Article  CAS  Google Scholar 

  28. Claude MC, Vanbutsele G, Martens JA (2001) Dimethyl branching of long n-alkanes in the range from decane to tetracosane on Pt/H–ZSM-22 bifunctional catalyst. J Catal 203:213–231

    Article  CAS  Google Scholar 

  29. Laxmi Narasimhan CS, Thybaut JW, Marin GB, Jacobs PA, Martens JA, Denayer JF, Baron GV (2003) Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22. J Catal 220:399–413

    Article  CAS  Google Scholar 

  30. Denayer JF, Baron GV, Vanbutsele G, Jacobs PA, Martens JA (1999) Modeling of adsorption and bifunctional conversion of n-alkanes on Pt/H-ZSM-22 zeolite catalyst. Chem Eng Sci 54:3553–3561

    Article  CAS  Google Scholar 

  31. Hayasaka K, Liang D, Huybrechts W, De Waele BR, Houthoofd KJ, Eloy P, Gaigneaux EM, van Tendeloo G, Thybaut JW, Marin GB, Denayer JFM, Baron GV, Jacobs PA, Kirschhock CEA, Martens JA (2007) Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods. Chem Eur J 13:10070–10077

    Article  CAS  PubMed  Google Scholar 

  32. Sastre G, Chica A, Corma A (2000) On the mechanism of alkane isomerisation (isodewaxing) with unidirectional 10-member ring zeolites-a molecular dynamics and catalytic study. J Catal 195:227–236

    Article  CAS  Google Scholar 

  33. Wang G, Liu Q, Su W, Li X, Jiang Z, Fang X, Han C, Li C (2008) Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts. Appl Catal A 335:20–27

    Article  CAS  Google Scholar 

  34. Webb EB III, Grest GS (1998) Influence of intracrystalline diffusion in shape selective catalytic test reactions. Catal Lett 56:95–104

    Article  CAS  Google Scholar 

  35. Maesen TLM, Schenk M, Vlugt TJH, de Jonge JP, Smit B (1999) The shape selectivity of paraffin hydroconversion on TON-, MTT-, and AEL-type sieves. J Catal 188:403–412

    Article  CAS  Google Scholar 

  36. Wang X, Zhang X, Wang Q (2020) N-dodecane hydroisomerization over Pt/ZSM-22: Controllable microporous Brönsted acidity distribution and shape-selectivity. Appl Catal A 590:117335

    Article  CAS  Google Scholar 

  37. Okamoto M, Nishimura Y, Takahashi M, Chen WH (2018) Synthesis of short, needle-shaped crystals of TON-type zeolite by addition of inhibitors of crystal growth along the [001] direction. Cyst Growth Des 18:6573–6580

    Article  CAS  Google Scholar 

  38. Niu P, Xi H, Lin M, Wang Q, Chen X, Wang P, Jia L, Hou B, Li D (2018) Micropore blocked core–shell ZSM-22 designed via epitaxial growth with enhanced shape selectivity and high n-dodecane hydroisomerization performance. Catal Sci Technol 8:6407–6419

    Google Scholar 

  39. Okamoto M, Huang L, Yamano M, Sawayama S, Nishimura Y (2013) Skeletal isomerization of tetradecane catalyzed by TON-type zeolites with a fragmented core–shell structure. Appl Catal A 455:122–128

    Article  CAS  Google Scholar 

  40. Huybrechts W, Thybaut JW, De Waele BR, Vanbutsele G, Houthoofd KJ, Bertinchamps F, Denayer JFM, Gaigneaux EM, Marin GB, Baron GV, Jacobs PA, Martens JA (2006) Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim. J Catal 239:451–459

    Article  CAS  Google Scholar 

  41. Ernst S, Kumar R, Weitkamp J (1988) Synthesis and catalytic properties of zeolite ZSM-23. Catal Today 3:1–10

    Article  CAS  Google Scholar 

  42. Patarin J, Lamblin JM, Faust AC, Guth JL, Raatz F (1989) Nouvelles zéollithes de type structural ton, leur préparation et leur utilisation. European Patent 0,345,106

    Google Scholar 

  43. Okamoto M, You M, Iwamoto H (2009) Method of synthesizing hollow zeolite, hollow zeolite and drug support comprising hollow zeolite. Jpn Patent 2009269788

    Google Scholar 

  44. Wang XD, Yang WL, Tang Y, Wang YJ, Fu SK, Gao Z (2000) Fabrication of hollow zeolite spheres. Chem Commun 2161–2162

    Google Scholar 

  45. Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Gao Z (2002) Hollow zeolite capsules: a novel approach for fabrication and guest encapsulation. Chem Mater 14:3217–3219

    Article  CAS  Google Scholar 

  46. Valtchev V, Mintova S (2001) Layer-by-layer preparation of zeolite coatings of nanosized crystals. Micropor Mesopor Mater 43:41–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okamoto, M. (2021). Core–Shell Structured Zeolite Catalysts with Minimal Defects for Improvement of Shape Selectivity. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_12

Download citation

Publish with us

Policies and ethics