Skip to main content

Core–Shell Confinement MnCeOx@ZSM-5 Catalyst for NOx Removal with Enhanced Performances to Water and SO2 Resistance

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Oxynitride (NOx, mainly NO and NO2) is a primary source of atmospheric pollutants from the exhaust of fossil fuel combustion. It is well known that the selective catalytic reduction of NOx with NH3 (NH3-SCR) is the most efficient technology for NOx control, and the Mn-Ce-based catalysts display remarkable low-temperature deNOx performance; however, their H2O and SO2 resistance are significantly lower than that of the vanadium-based catalysts (e.g., V2O5/WO3/TiO2). In this chapter, a novel shielding method was developed to design and prepare one core-shell structured Mn-Ce mixed oxide catalytic material for NH3-SCR of NOx. Due to the shielding effect of the zeolite shell and the synergy between the acidic properties of the zeolite shell and the redox properties of the MnCeOx cores, the MnCeOx@Z5 applied for NH3-SCR of NOx exhibited improved water vapor and SO2 resistance. This novel shielding and acid-redox synergy method developed in this chapter provides a guidance to design and synthesize other high-performance catalysts for the removal of NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng C, Liang J, Peng H, Yan R, Liu W, Wang Z, Wu P, Wang X (2018) Design and synthesis of Cu/ZSM-5 catalyst via a facile one-pot dual-template strategy with controllable cu content for removal of NOx. Ind Eng Chem Res 57:14967–14976

    Article  CAS  Google Scholar 

  2. Damma D, Ettireddy PR, Reddy BM, Smirniotis PG (2019) A review of low temperature NH3-SCR for removal of NOx. Catalysts 9:349

    Article  CAS  Google Scholar 

  3. Li Y, Liu W, Yan R, Liang J, Dong T, Mi Y, Wu P, Wang Z, Peng H, An T (2020) Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust. Appl Catal B: Environ 268, 118455

    Google Scholar 

  4. Tang C, Zhang H, Dong L (2016) Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Catal Sci Technol 6:1248–1264

    Article  CAS  Google Scholar 

  5. Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119:10916–10976

    Article  CAS  PubMed  Google Scholar 

  6. Arfaoui J, Ghorbel A, Petitto C, Delahay G (2018) Novel V2O5-CeO2-TiO2-SO42− nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2. Appl Catal B 224:264–275

    Article  CAS  Google Scholar 

  7. Cai S, Hu H, Li H, Shi L, Zhang D (2016) Design of multi-shell Fe2O3@MnO(x)@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance. Nanoscale 8:3588–3598

    Article  CAS  PubMed  Google Scholar 

  8. Shan W, Liu F, He H, Shi X, Zhang C (2012) A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B 115–116:100–106

    Article  CAS  Google Scholar 

  9. Du T, Qu H, Liu Q, Zhong Q, Ma W (2015) Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3 -SCR. Chem Eng J 262:1199–1207

    Article  CAS  Google Scholar 

  10. Wijayanti K, Andonova S, Kumar A, Li J, Kamasamudram K, Currier NW, Yezerets A, Olsson L (2015) Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34. Appl Catal B 166–167:568–579

    Article  CAS  Google Scholar 

  11. Wang T, Liu H, Zhang X, Liu J, Zhang Y, Guo Y, Sun B (2018) Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system. Appl Surf Sci 457:187–199

    Article  CAS  Google Scholar 

  12. Chang H, Li J, Chen X, Ma L, Yang S, Schwank JW, Hao J (2012) Effect of Sn on MnOx–CeO2 catalyst for SCR of NOx by ammonia: enhancement of activity and remarkable resistance to SO2. Catal Commun 27:54–57

    Article  CAS  Google Scholar 

  13. Chen X, Wang P, Fang P, Ren T, Liu Y, Cen C, Wang H, Wu Z (2017) Tuning the property of Mn-Ce composite oxides by titanate nanotubes to improve the activity, selectivity and SO2/H2O tolerance in middle temperature NH3-SCR reaction. Fuel Process Technol 167:221–228

    Article  CAS  Google Scholar 

  14. Qi G, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 51:93–106

    Article  CAS  Google Scholar 

  15. Han L, Gao M, Feng C, Shi L, Zhang D (2019) Fe2O3-CeO2@Al2O3 nanoarrays on Al-Mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3. Environ Sci Technol 53:5946–5956

    Article  CAS  PubMed  Google Scholar 

  16. Han L, Gao M, Hasegawa JY, Li S, Shen Y, Li H, Shi L, Zhang D (2019) SO2-tolerant selective catalytic reduction of NOx over Meso-TiO2@Fe2O3@Al2O3 metal-based monolith catalysts. Environ Sci Technol 53:6462–6473

    Article  CAS  PubMed  Google Scholar 

  17. Kang L, Han L, He J, Li H, Yan T, Chen G, Zhang J, Shi L, Zhang D (2019) Improved NO x reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts. Environ Sci Technol 53:938–945

    Article  CAS  PubMed  Google Scholar 

  18. Kijlstra WS, Biervliet M, Poels EK, Bliek A (1998) Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B: Environ 16, 327–337

    Google Scholar 

  19. Xu L, Wang C, Chang H, Wu Q, Zhang T, Li J (2018) New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR. Environ Sci Technol 52:7064–7071

    Article  CAS  PubMed  Google Scholar 

  20. Jiang L, Liu Q, Ran G, Kong M, Ren S, Yang J, Li J (2019) V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem Eng J 370:810–821

    Article  CAS  Google Scholar 

  21. Yao X, Chen L, Cao J, Chen Y, Tian M, Yang F, Sun J, Tang C, Dong L (2019) Enhancing the deNO performance of MnO /CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chem Eng J 369:46–56

    Article  CAS  Google Scholar 

  22. Dedecek J, Balgová V, Pashkova V, Klein P, Wichterlová B (2012) Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chem Mater 24:3231–3239

    Article  CAS  Google Scholar 

  23. de Oliveira ML, Silva CM, Moreno-Tost R, Farias TL, Jiménez-López A, Rodríguez-Castellón E (2009) A study of copper-exchanged mordenite natural and ZSM-5 zeolites as SCR–NOx catalysts for diesel road vehicles: Simulation by neural networks approach. Appl Catal B: Environ 88, 420–429

    Google Scholar 

  24. Zhang Q, Chen G, Wang Y, Chen M, Guo G, Shi J, Luo J, Yu J (2018) High-quality single-crystalline MFI-type nanozeolites: a facile synthetic strategy and MTP catalytic studies. Chem Mater 30:2750–2758

    Article  CAS  Google Scholar 

  25. Dai Q, Bai S, Lou Y, Wang X, Guo Y, Lu G (2016) Sandwich-like PdO/CeO2 nanosheet@HZSM-5 membrane hybrid composite for methane combustion: self-redispersion, sintering-resistance and oxygen, water-tolerance. Nanoscale 8:9621–9628

    Article  CAS  PubMed  Google Scholar 

  26. Peng H, Rao C, Zhang N, Wang X, Liu W, Mao W, Han L, Zhang P, Dai S (2018) Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO2 tolerance in methane combustion. Angew Chem Int Ed Engl 57:8953–8957

    Article  CAS  PubMed  Google Scholar 

  27. Ran X, Li M, Wang K, Qian X, Fan J, Sun Y, Luo W, Teng W, Zhang WX, Yang J (2019) Spatially confined tuning the interfacial synergistic catalysis in mesochannels toward selective catalytic reduction. ACS Appl Mater Interfaces 11:19242–19251

    Article  CAS  PubMed  Google Scholar 

  28. Guo K, Fan G, Gu D, Yu S, Ma K, Liu A, Tan W, Wang J, Du X, Zou W, Tang C, Dong L (2019) Pore size expansion accelerates ammonium bisulfate decomposition for improved sulfur resistance in low-temperature NH3-SCR. ACS Appl Mater Interfaces 11:4900–4907

    Article  CAS  PubMed  Google Scholar 

  29. Carja G, Kameshima Y, Okada K, Madhusoodana CD (2007) Mn–Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl Catal B 73:60–64

    Article  CAS  Google Scholar 

  30. Yan R, Lin S, Li Y, Liu W, Mi Y, Tang C, Wang L, Wu P, Peng H (2020) Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. J Hazard Mater 396:122592

    Article  CAS  PubMed  Google Scholar 

  31. Peng H, Dong T, Zhang L, Wang C, Liu W, Bao J, Wang X, Zhang N, Wang Z, Wu P, Zhang P, Dai S (2019) Active and stable Pt-Ceria nanowires@silica shell catalyst: design, formation mechanism and total oxidation of CO and toluene. Appl Catal B 256:117807

    Article  CAS  Google Scholar 

  32. Liu W, Li L, Zhang X, Wang Z, Wang X, Peng H (2018) Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. J CO2 Util 27, 297–307

    Google Scholar 

  33. Wang L, Wang G, Zhang J, Bian C, Meng X, Xiao FS (2017) Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst. Nat Commun 8:15240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ma R, Wang L, Wang S, Wang C, Xiao F-S (2017) Eco-friendly photocatalysts achieved by zeolite fixing. Appl Catal B 212:193–200

    Article  CAS  Google Scholar 

  35. Zhang J, Wang L, Shao Y, Wang Y, Gates BC, Xiao FS (2017) A Pd@Zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew Chem Int Ed Engl 56:9747–9751

    Article  CAS  PubMed  Google Scholar 

  36. Gu J, Zhang Z, Hu P, Ding L, Xue N, Peng L, Guo X, Lin M, Ding W (2015) Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catalysis 5:6893–6901

    Article  CAS  Google Scholar 

  37. Peng C, Yan R, Peng H, Mi Y, Liang J, Liu W, Wang X, Song G, Wu P, Liu F (2019) One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures, J Hazard Mater 121593

    Google Scholar 

  38. Boningari T, Pappas DK, Ettireddy PR, Kotrba A, Smirniotis PG (2015) Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: surface properties and key components in relation to the activity of NOx reduction. Ind Eng Chem Res 54:2261–2273

    Article  CAS  Google Scholar 

  39. Shen Q, Zhang L, Sun N, Wang H, Zhong L, He C, Wei W, Sun Y (2017) Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem Eng J 322:46–55

    Article  CAS  Google Scholar 

  40. Liu H, Fan Z, Sun C, Yu S, Feng S, Chen W, Chen D, Tang C, Gao F, Dong L (2018) Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl Catal B: Environ 244, 671–683

    Google Scholar 

  41. Devaiah D, Tsuzuki T, Boningari T, Smirniotis PG, Reddy BM (2015) Ce0.80M0.12Sn0.08O2−δ (M = Hf, Zr, Pr, and La) ternary oxide solid solutions with superior properties for CO oxidation. RSC Adv 5, 30275–30285

    Google Scholar 

  42. Devaiah D, Jampaiah D, Saikia P, Reddy BM (2014) Structure dependent catalytic activity of Ce0.8Tb0.2O2−δ and TiO2 supported Ce0.8Tb0.2O2−δ solid solutions for CO oxidation. J Ind Eng Chem 20, 444–453

    Google Scholar 

  43. Boningari T, Somogyvari A, Smirniotis PG (2017) Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind Eng Chem Res 56:5483–5494

    Article  CAS  Google Scholar 

  44. Chen L, Wang Q, Wang X, Cong Q, Ma H, Guo T, Li S, Li W (2020) High-performance CeO2/halloysite hierarchical catalysts with promotional redox property and acidity for the selective catalytic reduction of NO with NH3. Chem Eng J 390:124251

    Article  CAS  Google Scholar 

  45. Wang P, Sun H, Quan X, Chen S (2016) Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH(3) at low temperature. J Hazard Mater 301:512–521

    Article  CAS  PubMed  Google Scholar 

  46. Han JW, Park JS, Choi MS, Lee H (2017) Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl Catal B 203:625–632

    Article  CAS  Google Scholar 

  47. Luo T, Gorte RJ (2004) Characterization of SO2-poisoned ceria-zirconia mixed oxides. Appl Catal B 53:77–85

    Article  CAS  Google Scholar 

  48. Xie T, Zhao X, Zhang J, Shi L, Zhang D (2015) Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide. Int J Hydrogen Energy 40:9685–9695

    Article  CAS  Google Scholar 

  49. Kylhammar L, Carlsson P-A, Ingelsten HH, Grönbeck H, Skoglundh M (2008) Regenerable ceria-based SOx traps for sulfur removal in lean exhausts. Appl Catal B 84:268–276

    Article  CAS  Google Scholar 

  50. Kylhammar L, Carlsson P-A, Skoglundh M (2011) Sulfur promoted low-temperature oxidation of methane over ceria supported platinum catalysts. J Catal 284:50–59

    Article  CAS  Google Scholar 

  51. Zhuang K, Zhang Y-P, Huang T-J, Lu B, Shen K (2017) Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR. J Fuel Chem Technol 45:1356–1364

    Article  CAS  Google Scholar 

  52. Yang S, Guo Y, Chang H, Ma L, Peng Y, Qu Z, Yan N, Wang C, Li J (2013) Novel effect of SO2 on the SCR reaction over CeO2: mechanism and significance. Appl Catal B 136–137:19–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taicheng An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peng, H., Li, G., An, T. (2021). Core–Shell Confinement MnCeOx@ZSM-5 Catalyst for NOx Removal with Enhanced Performances to Water and SO2 Resistance. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_10

Download citation

Publish with us

Policies and ethics