Skip to main content

Introduction

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 949 Accesses

Abstract

Thanks to rapid advances in synthesis chemistry, nanomaterials with well-defined sizes, shapes, structures, crystal facets, and compositions are currently available. To date, a numerous number of work has been performed to design and construct different nanocomposites with core–shell and yolk–shell structures. In this chapter, classification, characteristics, and functionalities of core–shell and yolk–shell nanoparticles and their possibilities in catalytic reactions are briefly overviewed. Thereafter, the contents of this book are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng H-C (2013) Integrated nanocatalysts. Acc Chem Res 46(2):226–235

    Article  CAS  Google Scholar 

  2. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49(8):1362–1395

    Article  CAS  Google Scholar 

  3. Zhuang Z, Peng Q, Li Y (2011) Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 40(11):5492–5513

    Article  CAS  Google Scholar 

  4. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  CAS  Google Scholar 

  5. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  6. Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35(11):1162–1194

    Article  CAS  Google Scholar 

  7. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    Article  CAS  Google Scholar 

  8. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS (2015) Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590

    Article  CAS  Google Scholar 

  9. Das S, Perez-Ramirez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S (2020) Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of co2. Chem Soc Rev 49(10):2937–3004

    Article  CAS  Google Scholar 

  10. El-Toni AM, Habila MA, Labis JP, ALOthman ZA, Alhoshan M, Elzatahry AA, Zhang F (2016) Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 8(5):2510–2531

    Google Scholar 

  11. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  CAS  Google Scholar 

  12. Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7(47):19789–19873

    Article  CAS  Google Scholar 

  13. Mitsudome T, Kaneda K (2013) Advanced core-shell nanoparticle catalysts for efficient organic transformations. ChemCatChem 5(7):1681–1691

    Article  CAS  Google Scholar 

  14. Zhang Q, Lee I, Joo J-B, Zaera F, Yin Y (2013) Core-shell nanostructured catalysts. Acc Chem Res 46(8):1816–1824

    Article  CAS  Google Scholar 

  15. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126–131

    Article  CAS  Google Scholar 

  16. Zhong C-J, Maye MM (2001) Core-shell assembled nanoparticles as catalysts. Adv Mater 13(19):1507–1511

    Article  CAS  Google Scholar 

  17. Liu S, Bai S-Q, Zheng Y, Shah KW, Han M-Y (2012) Composite metal-oxide nanocatalysts. ChemCatChem 4(10):1462–1484

    Article  CAS  Google Scholar 

  18. Sun H, He J, Wang J, Zhang SY, Liu C, Sritharan T, Mhaisalkar S, Han MY, Wang D, Chen H (2013) Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J Am Chem Soc 135(24):9099–9110

    Article  CAS  Google Scholar 

  19. Li G, Tang Z (2014) Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6(8):3995–4011

    Article  CAS  Google Scholar 

  20. Liu R, Priestley RD (2016) Rational design and fabrication of core–shell nanoparticles through a one-step/pot strategy. J Mater Chem A 4(18):6680–6692

    Article  CAS  Google Scholar 

  21. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26(20):3176–3205

    Article  CAS  Google Scholar 

  22. Liu J, Qiao SZ, Chen JS, Lou XW, Xing X, Lu GQ (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47(47):12578–12591

    Article  CAS  Google Scholar 

  23. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  CAS  Google Scholar 

  24. Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911

    Article  CAS  Google Scholar 

  25. Li X, Yang Y, Yang Q (2013) Organo-functionalized silica hollow nanospheres: synthesis and catalytic application. J Mater Chem A 1(5):1525–1535

    Article  CAS  Google Scholar 

  26. Chen Y, Meng Q, Wu M, Wang S, Xu P, Chen H, Li Y, Zhang L, Wang L, Shi J (2014) Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 136(46):16326–16334

    Article  CAS  Google Scholar 

  27. Vaz B, Salgueirino V, Perez-Lorenzo M, Correa-Duarte MA (2015) Enhancing the exploitation of functional nanomaterials through spatial confinement: the case of inorganic submicrometer capsules. Langmuir 31(32):8745–8755

    Article  CAS  Google Scholar 

  28. Croissant JG, Cattoen X, Wong MC, Durand JO, Khashab NM (2015) Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7(48):20318–20334

    Article  CAS  Google Scholar 

  29. Perez-Lorenzo M, Vaz B, Salgueirino V, Correa-Duarte MA (2013) Hollow-shelled nanoreactors endowed with high catalytic activity. Chem Eur J 19(37):12196–12211

    Article  CAS  Google Scholar 

  30. Lee J, Kim SM, Lee IS (2014) Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 9(5):631–667

    Article  CAS  Google Scholar 

  31. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  32. Fan HJ, Gosele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3(10):1660–1671

    Article  CAS  Google Scholar 

  33. Zhang Q, Wang W, Goebl J, Yin Y (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4(6):494–507

    Article  CAS  Google Scholar 

  34. Wu XJ, Xu D (2010) Soft template synthesis of yolk/silica shell particles. Adv Mater 22(13):1516–1520

    Article  CAS  Google Scholar 

  35. Wong YJ, Zhu L, Teo WS, Tan YW, Yang Y, Wang C, Chen H (2011) Revisiting the stober method: inhomogeneity in silica shells. J Am Chem Soc 133(30):11422–11425

    Article  CAS  Google Scholar 

  36. Fang X, Zhao X, Fang W, Chen C, Zheng N (2013) Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5(6):2205–2218

    Article  CAS  Google Scholar 

  37. Qiao ZA, Huo Q, Chi M, Veith GM, Binder AJ, Dai S (2012) A “ship-in-a-bottle” approach to synthesis of polymer dots@silica or polymer dots@carbon core-shell nanospheres. Adv Mater 24(45):6017–6021

    Article  CAS  Google Scholar 

  38. Anderson BD, Tracy JB (2014) Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 6(21):12195–12216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuwahara, Y., Yamashita, H. (2021). Introduction. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_1

Download citation

Publish with us

Policies and ethics